Falcon4 86M

Camera User's Manual FA-S0-86M16-01-R and FA-S1-86M16-00-R

sensors | cameras | frame grabbers | processors | software | vision solutions

Notice

© 2018-2020 Teledyne DALSA

All information provided in this manual is believed to be accurate and reliable. No responsibility is assumed by Teledyne DALSA for its use. Teledyne DALSA reserves the right to make changes to this information without notice. Reproduction of this manual in whole or in part, by any means, is prohibited without prior permission having been obtained from Teledyne DALSA.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries. Windows, Windows 7, Windows 8 are trademarks of Microsoft Corporation.

All other trademarks or intellectual property mentioned herein belong to their respective owners.

Document date: November 20, 2020 Document number: 03-032-20220-05

About Teledyne DALSA

Teledyne DALSA is an international high-performance semiconductor and electronics company that designs, develops, manufactures, and markets digital imaging products and solutions, in addition to providing wafer foundry services.

Teledyne DALSA Digital Imaging offers the widest range of machine vision components in the world. From industry-leading image sensors through powerful and sophisticated cameras, frame grabbers, vision processors and software to easy-to-use vision appliances and custom vision modules.

Contents

THE FALCON4 86M CAMERA	5
DESCRIPTION	5
Key Features	5
Programmability	5
Applications	5
MODEL NUMBERS AND SOFTWARE REQUIREMENTS	6
CAMERA PERFORMANCE SPECIFICATIONS	6
ENVIRONMENTAL SPECIFICATIONS	8
SENSOR COSMETIC SPECIFICATIONS	8
RESPONSIVITY & QE	9
Angle of Incidence	10
FLASH MEMORY SIZE	10
CERTIFICATIONS & COMPLIANCE	11
SHOCK & VIBRATION	11
SUPPORTED INDUSTRY STANDARDS	12
GenICam™	12
Camera Link HS	12
Camera Link HS ROI Characteristics	13
SENSOR BLOCK DIAGRAM & PIXEL READOUT	13
CAMERA SETUP	14
System Precautions & Cleaning	14
Precautions	14
Cleaning the Device	14
Electrostatic Discharge and the CMOS Sensor	14
SOFTWARE AND HARDWARE SETUP	15
RECOMMENDED SYSTEM REQUIREMENTS	15
SETUP STEPS: OVERVIEW	15
Step 1: Install and Configure Frame Grabber and Software	15
Step 2: Connect Camera Link and Power Cables	15
Power Connector	16
Camera Link Data Connector	17
Input Signals, Camera Link	17
Frame Start Trigger (EXSYNC)	17
LED Indicators	18
LED States on Power Up	18
Step 3: Establish Communication between the frame grabber and the	10
camera	19
1. Power on the camera	19
2. Connect to the ramera	19
Check LED Status	20 20
Software Interface	
USING CAMEXPERT	21
CamExpert Panes	21

Creating a Camera Configuration File in the Host	. 23
CAMERA OPERATION	.24
Factory Settings	. 24
CHECK CAMERA AND SENSOR INFORMATION	. 24
Verify Temperature	. 24
THERMAL MANAGEMENT	. 25
Handling	. 25
SAVING AND RESTORING CAMERA SETTINGS	. 26
ACQUISITION AND TRANSFER CONTROL FEATURES	. 28
Test Patterns	. 28
GAIN AND BLACK LEVEL CONTROL DETAILS	. 30
EXPOSURE CONTROLS	. 31
Internally Programmable Frame Rate and Internally Programmable	
Exposure Time (Default)	31
External Frame Rate and External Exposure Time (Trigger Width)	32
External Frame Rate, Programmable Exposure Time	33
Exposure Time	. 33
Trigger Modes	. 34
Internal Frame Rate	. 34
I/O Block Diagram	. 34
Opto-Coupled Inputs	. 35
Opto-Coupled Outputs	. 35
FLAT FIELD CORRECTION AND DEFECTIVE PIXEL DETECTION OVERVIEW	. 36
Correction Function Block Diagram	. 36
Dark Row Subtract Algorithm	. 37
Flat Field Correction Algorithm Description	. 37
General Notes on FFC calibration	37
Important Note on Command Timeout Errors	. 38
Important Note on Window Blemishes	. 39
Performing an FFC Setup in the Camera	. 40
Defective Pixel Detection and Replacement	. 41
Single Pixel Replacement	. 42
Defective Columns and Row Replacement	. 42
Median Filter	. 43
File Access via the CamExpert Tool	. 44
	45
	.
	. 45
LC & TCC DECLARATION OF CONFORMITT	.40
APPENDIX A: GENICAM COMMANDS	.47
CAMERA INFORMATION CATEGORY	. 48
Camera Information Feature Descriptions	. 48
ACQUISITION AND TRANSFER CONTROL CATEGORY	. 51
Acquisition and Transfer Control Feature Descriptions	. 51
SENSOR CONTROL CATEGORY	. 52
Sensor Control Feature Descriptions	. 52
I/O CONTROL CATEGORY	. 55
I/O Controls Feature Descriptions	. 55
Advanced Processing Control Category	. 60
Advanced Processing Control Feature Descriptions	. 61
IMAGE FORMAT CONTROLS CATEGORY	. 68

Image Format Control Feature Descriptions	68
CLHS LINK TRANSPORT LAYER CATEGORY	71
Camera Link Transport Layer Feature Descriptions	
FILE ACCESS CONTROL CATEGORY	
File Access Control Feature Descriptions	72
APPENDIX B. CLEANING THE SENSOR WINDOW	74
Recommended Equipment	74
Procedure	
ADDENDLY C. INTERNAL FLAT FIELD CALIBRATION ALCORITUMO	76
APPENDIX C: INTERNAL FLAT FIELD CALIBRATION ALGORITHMS	
Offset (EDN) Calibration	
Chin (DDNU) Calibration	
Color Camera Gain (PRNII) Calibration	
	//
APPENDIX D: FFC FILE FORMAT	79
FFC FILE FORMAT	
CAMERA DEFECT MAP	81
	60
	02
CONTACT INFORMATION	83
SALES INFORMATION	
TECHNICAL SUPPORT	

Figures

Figure 1: Spectral Responsivity	9
Figure 2: Typical Spectral Quantum Efficiency	9
Figure 3: Angular Response	10
Figure 4: Random Vibration	11
Figure 5. Single CLHS Connector Configuration	12
Figure 6: Pixel Readout of the Falcon 4 camera	13
Figure 7: Input and Output, trigger, and Power Connectors	16
Figure 8: 12-pin Hirose Circular Male Power Plug—Power Connector	17
Figure 9: LED States on Power Up	18
Figure 10: CamExpert Interface	22
Figure 11: CamExpert Power-up Configuration Dialog	26
Figure 12: Relationship between the Camera Settings	27
Figure 13: CamExpert Acquisition and Transfer Control Category	28
Figure 14: CamExpert Image Format Controls Category	28
Figure 15: Internally Programmable Frame Rate and Exposure Time (Default)	32
Figure 16: External Frame Rate and External Exposure Time (Trigger Width)	32
Figure 17: External Frame Rate, Programmable Exposure Time	33
Figure 18 I/O Module Block Diagram	34
Figure 19 Opto-coupled input	35
Figure 20: Simplified General Purpose Output Diagram	35
Figure 21: CamExpert Advanced Processing Category	36
Figure 22 Flat field and defective pixel processing	36
Figure 23: Setting the Camera's Timeout Value	38
Figure 24: Window Blemishes	39
Figure 25 Initial File Access Control Dialog	44
Figure 26 CamExpert Camera Information Category	48
Figure 27 CamExpert Acquisition and Transfer Control Category	51
Figure 28 CamExpert Sensor Control Category	52
Figure 29 CamExpert I/O Control Category	55
Figure 30 CamExpert Advanced Processing Category	60
Figure 31 CamExpert Image Format Control Category	68
Figure 32 CamExpert CHLS Link Transport Layer Category	71
Figure 33 CamExpert File Access Control Category	72
Figure 34 Monochrome Flat Field Gain Calibration	76
Figure 35: CamExpert File Access Control Dialog	/9

The Falcon4 86M Camera

Description

Teledyne DALSA's new generation of color and monochrome area scan cameras—the

Falcon4[™] 86M—incorporate very large resolutions and fast frame rates, enabling high-speed image capture with superb spatial resolution and excellent image quality. Global shuttering and correlated double sampling ensure smear free and low noise images. These features make the Falcon4 cameras the best choices for applications where throughput, resolution and high pixel capacity matter most.

Inside the Falcon4 camera is our leading-edge, global shutter CMOS sensor, which enables high speed imaging at very large resolutions. Global shutter technology removes the need for mechanical shutters which are limited in the number of open / shut operations.

The Falcon4 camera is compliant with GenICam^M and CameraLink HS^M (CLHS) specifications delivering 12 and 16 bits of data. In addition, the M95 thread opening allows for your choice of lens.

Key Features

- Global shutter and exposure control
- Cross-track of 10,720 pixels
- Faster frame rates through windowing
- Good NIR response
- Built-in FPN and PRNU correction
- CLHS interface and GenICam compliant

Programmability

- Adjustable digital gain and offset
- 12 and 16 bit output
- Adjustable integration time and frame rate
- Test patterns and camera diagnostics

Applications

- Aerial imaging
- Aerial reconnaissance
- Surveillance
- Machine vision

Model Numbers and Software Requirements

This manual covers the Falcon4 camera models summarized below. New models are added to this manual as they are released by Teledyne DALSA.

Table 1: Camera Models Overview

Model Number	Description
FA-S0-86M16-01-R	86M pixel monochrome, Camera Link HS.
FA-S1-86M16-00-R	86M pixel color, Camera Link HS.

Table 2: Camera Accessories

Part Number	Description
AC-MS-00117-00-R	Fan mounting accessory. Allows a fan to be mounted on the camera case to direct air flow over the heat sink.

Table 3: Software

Software	Product Number / Version Number
Camera firmware	Embedded within camera
GenICam [™] support (XML camera description file)	Embedded within camera
Recommended: Sapera LT, including CamExpert GUI application and GenICam for Camera Link imaging driver.	Version 7.50 or later

Camera Performance Specifications

Table 4: Camera Performance Specifications

Specifications	Performance
Resolution	10720 (H) x 8064 (V)
Pixel Rate	1.38 Gpixel / s
Frame Rate	16 fps, maximum
Pixel Size	6 µm x 6 µm
Bit Depth	12 and 16 bits, selectable Camera Link HS
Exposure Time	100 µs minimum
Dynamic Range	56 dB (monochrome) and 50 dB (color) with global shutter 62 dB (monochrome) and 54 dB (color) with rolling shutter
Operating Temp	0 °C to +50 °C, front plate temperature
Connectors and Mechanicals	
Size	100 mm (H) x 100 mm (W) x 67 mm (D)
Mass	< 1 kg
Data Connector	CLHS—single C2 7M1, CX4 connector
Power Connector	Hirose 12-pin circular
Supply Voltage	+ 12 V to + 24 V DC (± 5 %), 3.5 Amps

Power	< 35 W
Lens Mount	M95 x 1
Sensor Alignment	\pm 50 µm in X-Y directions

Mono Operating Ranges	Units	Value	Notes
Noise and Non-Uniformity Performance			
Full Well	e-	> 22, 000, global shutter > 27, 000, rolling shutter	
Dynamic Range	dB	53, global shutter 62, rolling shutter	
Random Noise	DN rms	7.0, global shutter 3.2, rolling shutter	Maximum, FFC enabled
FPN (w/o correction), global	DN rms	48	
PRNU (w/o correction), global	% rms	3.5	% measured signal level, nominally 50% output. FPN removed
Nominal Output Characteristics			
Broad Band Responsivity	DN / (nJ / cm²)	 137, global shutter mono 117, rolling shutter mono 64, global shutter color 73, rolling shutter color 	FFC enabled
SEE	nJ / cm²	30, global shutter mono 35, rolling shutter mono 64, global shutter color 56, rolling shutter color	FFC enabled
NEE	pJ/cm²	 64, global shutter mono 30, rolling shutter mono 133, global shutter color 44, rolling shutter color 	FFC enabled
Antiblooming		> 600 x saturation	
Integral non-linearity	%	3	From 10-90% of camera saturation

*DN = digital number (12-bit)

Notes:

- 1) Mono Light source: broadband, quartz halogen, 3250 K with 700 nm IR cut-off filter.
- 2) Color Light source: broadband, quartz halogen, 3250K with BG38 filter.
- 3) Responsivity with FFC enabled.
- 4) Mono camera PRNU w/o correction is measured at 50% output with FPN removed.
- 5) Integral non-linearity = Deviation from best fit line 10 to 90%/4096.

Environmental Specifications

Table 5: Environmental Specifications

Specifications	Ranges
Storage temperature range	-20 °C to +80 °C
Humidity (storage and operation)	15% to 80% relative, non-condensing
MTBF (mean time between failures)	>100,000 hours, typical field operation

Sensor Cosmetic Specifications

The following table lists the current cosmetic specifications for the Teledyne DALSA sensor used in the cameras.

Table 6: Blemish Specifications

Description	Definition	# of Defects
Column defect	A group of more than 20 contiguous pixels along a single column that deviate from the neighboring columns by: More than $\pm 15\%$ at 50% saturation with Flat-field correction ON and 1x gain. More than 20% of saturation in dark and 1x gain.	6
Row defect	A group of more than 20 contiguous pixels along a single row that deviate from the neighboring columns by: More than $\pm 15\%$ at 50% saturation with Flat-field correction ON and 1x gain. More than 20% of saturation in dark and 1x gain.	6
Cluster defect	A grouping of 2 to 16 inclusive defective pixels at a given test condition. A defective pixel is defined as 20% of saturation output when sensor is dark and \pm 15% away from the average of the neighboring pixels of the same color measured at 20% to 80% of maximum output in steps of 10%. The maximum cluster defect size is 16.	34
Uncorrectable single defective pixel	At dark: Pixel level is elevated beyond 20% of saturation. At 50% saturation: Pixel level is $\pm 15\%$ away from its neighboring pixels with FFC on.	15,000

1. Cluster defects are separated by no less than one good pixel in any direction.

2. Column and row defects are separated by no less than two good columns and rows respectively.

Test Conditions

- Nominal light = illumination at 50% of saturation
- Temperature of Camera is 35 C
- Integration Time: 10 ms
- At nominal sensor gain (1x)

Responsivity & QE

The responsivity graph describes the camera's response to different wavelengths of light (excluding lens and light source characteristics).

The image sensor includes micro lenses to improve the collection efficiency of the active pixel area. The drawback to this is that the light collected varies with the angle of incidence, as shown in the Angle of Incidence figure, below. Pixel Response Non Uniformity (PRNU) can be calibrated in the field and takes into account the lighting and lens effects, and results in a more uniform output level.

Typical Spectral Responsivity

Figure 1: Spectral Responsivity

Typical Spectral Quantum Efficiency

Figure 2: Typical Spectral Quantum Efficiency

Angle of Incidence

Flash Memory Size

Table 7: Memory

Camera	Flash Memory Size
FA-S0-86M16-01-R	500 MByte program storage 8,000 MByte correction coefficients
FA-S1-86M16-00-R	500 MByte program storage 8,000 MByte correction coefficients

Certifications & Compliance

Table 8: Radiated Emissions

Compliance

EN 55011, CISPR 11, EN 55022, EN 55032, CISPR 22, CISPR 32, FCC Part 15, and ICES-003 Class A Emissions Requirements.

EN 55024, and EN 61326-1 Immunity to Disturbance.

Shock & Vibration

The cameras meet or exceed the following specifications:

- Random vibration per MIL-STD-810F at 25 G²/HZ [Power Spectral Density] or 5 RMS
- Shock testing 75 G peak acceleration per MIL-STD-810F

Figure 4: Random Vibration

Supported Industry Standards

GenICam™

The camera is GenICam compliant and implements a superset of the GenICam Standard Features Naming Convention specification V1.5.

This description takes the form of an XML device description file using the syntax defined by the GenApi module of the GenICam specification. The camera uses the GenICam Generic Control Protocol (GenCP V1.0) to communicate over the Camera Link HS command lane.

For more information see <u>www.genicam.org</u>.

Camera Link HS

The camera is Camera Link HS version 1.0 compliant. Camera Link HS is the next generation of high performance communications standards and is used where a digital industrial camera interfaces with single or multiple frame grabbers with data rates exceeding those supported by Camera Link. The camera includes a Camera Link HS connector capable of supporting data rates up to 2.1 Gbytes / sec per second.

Figure 5. Single CLHS Connector Configuration

The command channel is used by the frame grabber to send command, configuration, and programming data to the camera and to receive command responses, status, and image data from the camera.

The designation C2, 7M1 defines the use of a SFF-8470 connector (C2) and up to 7 lanes of data with 1 command channel using M-Protocol (8b/10b) at the default speed of 3.125 Gb/sec.

Camera Link HS ROI Characteristics

The single ROI is customer entered and transmitted across all seven data lanes. There is a minimum of 96 pixels per data lane used.

CLHS limits the start and stop location of the ROI to a multiples of 32 pixels. The maximum line rate is limited by the sensor when not limited by the CLHS cable or by the PCIe transfer. The sensor is limited to a 125 kHz maximum line rate.

The CLHS cable has approximately 2.1 GByte / sec bandwidth for seven lanes. The XTIUM X8 frame grabber has about 3.2 GByte / sec across the PCIe bus and can support the full frame rate of the camera.

Sensor Block Diagram & Pixel Readout

Pixels are read from left to right, top to bottom. The data for each line is transferred from the sensor to 7 CLHS data lanes. CLHS is a packet-based protocol therefore the concept of taps or tap geometry does not apply; the frame grabber reconstructs the images based on the information contained in the packet, regardless of which data lane is used for the transfer.

Pixels are read from left to right, top to bottom

Figure 6: Pixel Readout of the Falcon 4 camera.

Note:

• As viewed looking at the front of the camera *without a lens*. (The Teledyne DALSA logo on the side of the case will be right-side up.)

Camera Setup

System Precautions & Cleaning

Precautions

Read these precautions and this manual before using the camera.

Do not open the housing of the camera. The warranty is voided if the housing is opened.

- Confirm that the camera's packaging is undamaged before opening it. If the packaging is damaged please contact the related logistics personnel.
- Keep the camera's front plate temperature in a range of 0 °C to 50 °C during operation. The camera has the ability to measure its internal temperature. Use this feature to record the internal temperature of the camera when it is mounted in your system and operating under worst case conditions. The camera will stop outputting data if its internal temperature reaches 70 °C. Refer to section Verify Temperature for more information on the 'Temperature' feature and thermal management.
- Do not operate the camera in the vicinity of strong electromagnetic fields. In addition, avoid electrostatic charging, violent vibration, and excess moisture.
- Though this camera supports hot plugging, it is recommended that you power down and disconnect power to the camera before you add or replace system components.

Cleaning the Device

To clean the device, avoid electrostatic charging by using a dry, clean absorbent cotton cloth dampened with a small quantity of pure alcohol. Do not use methylated alcohol.

To clean the surface of the camera housing, use a soft, dry cloth. To remove severe stains use a soft cloth dampened with a small quantity of neutral detergent and then wipe dry. Do not use volatile solvents such as benzene and thinners, as they can damage the surface finish.

Electrostatic Discharge and the CMOS Sensor

Image sensors and the camera bodies housing are susceptible to damage from electrostatic discharge (ESD). Electrostatic charge introduced to the sensor window surface can induce charge buildup on the underside of the window. If this occurs, the charge normally dissipates within 24 hours and the sensor returns to normal operation.

Software and Hardware Setup

Recommended System Requirements

To achieve best system performance, the following minimum requirements are recommended:

- High bandwidth frame grabber. For example, Teledyne DALSA Xtium PX8 CLHS series frame grabber: <u>http://www.teledynedalsa.com/imaging/products/fg/#digital-cameralink</u>.
- Operating systems: Refer to frame grabber documentation for supported platforms.

Setup Steps: Overview

Take the following steps in order to setup and run your camera system. They are described briefly below and in more detail in the sections that follow.

- 1. Install and Configure Frame Grabber and Software.
- 2. Connect Camera Link and Power Cables.
- 3. Establish communication with the camera.

Step 1: Install and Configure Frame Grabber and Software

Teledyne DALSA recommends its Xtium PX8 CLHS series frame grabber or equivalent. Follow the manufacturer's installation instructions.

A GenICam[™] compliant XML device description file is embedded within the camera firmware allowing GenICam[™] compliant application to know the camera's capabilities immediately after connection.

Installing Sapera LT gives you access to the CamExpert GUI, a GenICam[™] compliant application. Sapera LT is available free of charge for download from the <u>Teledyne Dalsa</u> website.

Step 2: Connect Camera Link and Power Cables

The camera uses a Camera Link HS SFF-8470 (CX4) cable and a Hirose connector for power and IO connections.

- Connect the required Camera Link HS cable from the camera to the frame grabber installed on the computer.
- Connect a power cable from the camera to a power supply that can provide a constant voltage from +12 V to +24 V DC.

Note: the use of cables types and lengths other than those specified may result in increased emission or decreased immunity and performance of the camera.

Figure 7: Input and Output, trigger, and Power Connectors

WARNING! Grounding Instructions

Static electricity can damage electronic components. It's critical that you discharge any static electrical charge by touching a grounded surface, such as the metal computer chassis, before performing handling the camera hardware.

Power Connector

WARNING: It is extremely important that you apply the appropriate voltages to your camera. Incorrect voltages may damage the camera. Input voltage requirement: +12 V to +24 V DC (\pm 5 %), 3.5 Amps. Before connecting power to the camera, test all power supplies.

Figure 8: 12-pin Hirose Circular Male Power Plug—Power Connector

Pin	Description	Pin	Description			
1	GND	7	OUT2+			
2	+12 V to +24 V DC	8	OUT2-			
3	OUT1-	9	NC			
4	OUT1+	10	NC			
5	IN1-/Trigger	11	IN2+/Trigger			
6	IN1+/Trigger	12	IN2-/Trigger			

WARNING:	When	setting	up	the	camera	's	power	supplies	follow	these	guidelines	:
----------	------	---------	----	-----	--------	----	-------	----------	--------	-------	------------	---

- Apply the appropriate voltages.
- Protect the camera with a 3.5 amp slow-blow fuse between the power supply and the camera.
- Do not use the shield on a multi-conductor cable for ground.
- Keep leads as short as possible in order to reduce voltage drop.
- Use high-quality linear supplies in order to minimize noise.

Note: If your power supply does not meet these requirements, then the camera performance specifications are not guaranteed.

Camera Link Data Connector

The camera uses a Camera Link HS SFF-8470 (CX4) cable.

Input Signals, Camera Link

The camera accepts control inputs through the Camera Link HS SFF-8470(CX4) connector.

The camera ships (factory setting) in internal sync, and internally triggered integration.

Frame Start Trigger (EXSYNC)

The EXSYNC signal tells the camera when to integrate and readout the image. It can be either an internally generated signal by the camera, or it can be supplied externally by a CLHS Pulse Message software command or camera GPIO pin.

LED Indicators

The camera is equipped with 2 LEDs on the back to display the operational status of the camera. The tables below summarize the operating states of the camera and the corresponding LED states. When more than one condition is active, the LED indicates the condition with the highest priority.

Camera Status LED	Meaning
Off	No power or hardware malfunction
Red slow blinking	Camera in temporary shutdown (e.g. temperature). The communication channel is maintained but imaging is disabled
Red solid	Fatal error state. Device is not functional
Blue fast blinking	Firmware upgrade, file transfer
Blue slow blinking	Camera waiting for warm up to complete (Camera initialization)
Blue solid	Upgrading internal firmware, when acquisition is disabled. This happens when changing a camera feature that effects the image output (e.g. AOI, bit depth, etc.)
Green solid	Free-running acquisition
Green slow blinking	Calibration in progress
Orange slow blinking	Camera initializing
CLHS Status LED	Meaning
Off	No power or hardware malfunction
Orange solid	The frame grabber is holding this device in reset preventing any communication
Orange slow blinking	The devices have established communication and determined that they are not interoperable, and camera is initializing
Red solid	Fatal error state. Device is not functional.
Red slow blinking	Camera in temporary shutdown (e.g. temperature). The communication channel is maintained but imaging is disabled
Red fast blinking	Camera has CLHS link error.
Green solid	Link established and data transfer may take place.
Green fast blinking	Camera is losing trigger
Green slow blinking	Looking for Link

LED States on Power Up

The following LED sequence occurs when the Falcon 4 is powered up connected to a CLHS frame grabber.

Figure 9: LED States on Power Up

Step 3: Establish Communication between the frame grabber and the camera

To establish communication with the camera following these steps in order:

- 1. Power on the camera.
- 2. Connect to the frame grabber.
- 3. Connect to the camera.

1. Power on the camera

- Turn on the camera's power supply. You may have to wait up to 60 seconds for the camera to warm up and prepare itself for operation.
- The camera must boot fully before it will be recognized by the GenCP compliant application. In this ready-state, the CLHS LED will be green and the Camera LED will be green or blue (if using a Teledyne DALSA frame grabber). You are now ready to connect the frame grabber, step 2.

2. Connect to the frame grabber

- Start Sapera CamExpert (or an equivalent GenCP-compliant interface) by double-clicking the desktop icon created during the software installation.
- CamExpert will search for Sapera devices installed on your system. In the Devices list area on the left side of the GUI, the connected frame grabber will be shown.

• Select the frame grabber device by clicking on its name.

Note: The first time you set up the camera you will need to establish a communication link between the camera and frame grabber; refer to the frame grabber documentation for information on installation and setup configuration.

3. Connect to the camera

- CamExpert will search for Sapera devices installed on your system. In the Devices list area on the left side of the GUI, the connected Cabernet camera will be shown.
- When CamExpert detects a camera (as per the CLHS device discovery protocol), camera parameters are displayed along with the board parameters.

Parameters			×	
Category		Parameter	Value	
Board		Camera Type	Linescan	
Basic Timing		Color Type	Monochrome	
Advanced Contro	1	Pixel Depth	8	
Esternal Trianes		Data Lanes	7	
External mgger		Horizontal Active (in Pixels)	16384	
Image Buffer and ROI Attached Camera - Xtium-CLHS_PX8_1		Data Valid	Disabled	
		CLHS Configuration	None	
Camera Informati	on	Bit Transfer Rate	3.125 Gb/s	
Acquisition and T	ransfer Control	PoCL	Disabled	
Sensor Control		PoCL Status	Not Active	
I/O Controls				
Advanced Proces	sing			
Image Format Co	ntrols			
CLHS Link Transp	ort Layer			
File Access Contro	bl			

• When properly connected, the video status bar displays camera signals in green.

Video status: 3.125 Gb/s Lane 1 Lock Lane 2 Lock Lane 3 Lock Lane 4 Lock Lane 5 Lock Lane 6 Lock Lane 7 Lock Line Valid PoCL PoCL 2

• Modify the camera and frame grabber parameter settings as required, and test the image acquisition by clicking the Grab button.

• Save the frame grabber configuration to a new *.ccf file.

Check LED Status

At this point, if the camera is operating correctly the LEDs will flash yellow for approximately 10 seconds and then turn solid green if acquisition is on, or camera LED stays blue, CLHS LED blinks green to wait for trigger

Software Interface

All the camera features can be controlled through CamExpert. For example, under the Sensor Control menu you can control the frame rate and exposure times.

At this point you are ready to start operating the camera in order to acquire images, set camera functions, and save settings.

Using CamExpert

The Sapera CamExpert tool is the interfacing tool for GenCP compliant Camera Link cameras, and is supported by the Sapera library and hardware. When used with a CLHS camera, CamExpert allows a user to test most of the operating modes. Additionally, CamExpert is able to save and reload the frame grabber configuration to simplify repeated power-up system configuration. Similarly, the camera is able to store the selected camera configuration in a user set which can be recalled each time the camera is repowered.

An important component of CamExpert is its live acquisition display window which allows immediate verification of timing or control parameters without the need to run a separate acquisition program.

Click on any parameter and a short description is displayed below the Category pane. Click on the vertice with the open the help file for more descriptive information on CamExpert.

Note: The examples shown may not entirely reflect the features and parameters available from the camera model and camera mode used in your application.

CamExpert Panes

The various areas of the CamExpert tool are described in Figure 10: CamExpert Interface. Device Categories and Parameter features are displayed as per the device's XML description file. The number of parameters shown is dependent on the View mode selected (Beginner, Expert, Guru – see description below).

Figure 10: CamExpert Interface

- **Device Selector pane**: View and select from any installed Sapera acquisition device. After a device is selected, CamExpert will only present parameters applicable to that device. Optionally select a camera file included with the Sapera installation or saved by the user.
- **Parameters pane**: Allows viewing or changing all acquisition parameters supported by the acquisition device. CamExpert displays parameters only if those parameters are supported by the installed device. This avoids confusion by eliminating parameter choices when they do not apply to the hardware in use.
- **Display pane**: Provides a live or single frame acquisition display. Frame buffer parameters are shown in an information bar above the image window.
- **Control Buttons**: The Display pane includes CamExpert control buttons. These are:

Grab 🐝 Freeze	Acquisition control button: Click once to start live grab, click again to stop.
Snap	Single frame grab: Click to acquire one frame from device.
Trigger	Software trigger button: With the I/O control parameters set to Trigger Enabled / Software Trigger type, click to send a single software trigger command.
1:1 🔍	CamExpert display controls: (these do not modify the frame buffer data) Stretch (or shrink) image to fit, set image display to original size, or zoom the image to any size and ratio. This does not affect the acquisition.
Î.	Histogram / Profile tool: Select to view a histogram or line/column profile during live acquisition.

• **Output pane**: Displays messages from CamExpert.

CamExpert View Parameters Option

All camera features have a Visibility attribute which defines its requirement or complexity. The states vary from Beginner (features required for basic operation of the device) to Guru (optional features required only for complex operations).

CamExpert presents camera features based on their visibility attribute. CamExpert provides quick Visibility level selection via controls below each Category Parameter list [<< Less More >>]. The user can also choose the Visibility level from the *View · Parameters Options* menu.

Creating a Camera Configuration File in the Host

- When using the Teledyne DALSA Sapera SDK the CCF is created automatically via a save.
- When using a 3rd party SDK application, if that SDK supports **GenAPI 2.4**, then the process is automatic. Simply follow the 3rd party *Save Camera* method as instructed.
- If the SDK is based on **GenAPI 2.3** or lower, the user must call the command DeviceFeaturePersistenceStart before using the SDK *Save Camera* method and the command DeviceFeaturePersistenceEnd at the end of the save function.

Camera Operation

Factory Settings

The camera ships and powers up for the first time with the following factory settings:

- Flat field coefficients enabled (calibrated in internal exposure mode, non-concurrent readout and integration).
- Defect concealment enabled.
- Internal exposure mode (internal frame rate and exposure time).
- 12 Hz frame rate and 10 msec exposure time.
- Dark row subtract enabled with the nominal background add value set

Check Camera and Sensor Information

Camera and sensor information can be retrieved via a controlling application—for example, the CamExpert GUI shown in the following examples. Parameters such as camera model, firmware version, sensor characteristics, and so forth, are read to uniquely identify the connected device.

The parameters used to select, load and save user sets are grouped together under the Camera Information category.

Verify Temperature

To determine the temperature at the camera, use the **Refresh Temperature** feature. The Device Temperature selector allows you to select which temperature sensor to read (FPGA, sensor board or sensor). The temperature returned is the internal temperature in degrees Celsius. For proper operation this value should not exceed 70 °C. If the camera exceeds the designated temperature it will stop imaging and the LED will turn red. After you have diagnosed and remedied the issue use the **Device Reset** function.

Thermal Management

The camera is designed to work with a maximum case temperature of 50 °C. If the camera is left powered on a bench, without lens, heat sinking, or forced air movement, the camera will become *very* hot to the touch and will reduce its power dissipation by disabling the imaging function.

If this occurs, the LED turns red and communication with the camera is still available.

An accessory is available (part number AC-MS-00117-00-R, shown below) that mounts a fan to the camera case to force air flow over the camera's heat sink. This accessory can be ordered from Teledyne DALSA.

The fan's electrical connection is via 2 pigtail wires. The red wire is hooked to a +14 V to +24 V supply @ 150 mA max, 100 mA typ. The black wire is the power return. With a +24 V supply, the temperature on the sensor board will be about 25 degrees above ambient, as measured by the sensor board temperature sensor. A +14 V supply results in an approximately +30 °C temperature rise above ambient.

Handling

Warning! Depending on the mounting design and the operating conditions the camera body could become hot. You must take precautions to ensure your safety and avoid touching the camera directly during operation.

Saving and Restoring Camera Settings

The Power-up Configuration parameter opens a dialog allowing you to specify the camera configuration to use on power up and to save current parameter settings.

Power-up Configuration	x
Camera Power-up configuration	1
Factory 💌	
Load / Save Configuration	
Factory Set	
Save Load	
Close	

Figure 11: CamExpert Power-up Configuration Dialog

When the user changes a camera parameter, the settings are stored in the camera's *volatile* memory and will be lost if the camera resets or is powered down. To save these settings for reuse, they must be saved to the camera's non-volatile memory using the **User Set Save** parameter. Previously saved user setting (User Set 1 to 3) or the factory settings can be restored using the User Set Selector and User Set Load parameters.

Either the Factory or one of the User settings can be specified as the Default Set by selecting it in the User Set Default Selector. The chosen set is automatically loaded when the camera is reset or powered up. It should also be noted that the value of Default Selector will automatically get save in non-volatile memory whenever it is changed.

The relationship between these three settings is illustrated here:

Figure 12: Relationship between the Camera Settings

Note: If a test pattern is active when you save the **User Set**, the camera will turn off all digital processing upon restart.

For example:

- Set the test image selector to FPN Diagonal Pattern.
- Do FPN Calibration and save the coefficient set.
- Change the FFC mode to ActiveAll.
- Set the default selector to UserSet1.
- Save User Set 1.
- Power cycle the camera.
- Reconnect to the camera through CamExpert.
- The FFC mode will be Off when it should be ActiveAll.

Acquisition and Transfer Control Features

Use the commands grouped under the Acquisition and Transfer Control category to choose the acquisition mode, start and stop acquisitions, and to monitor the acquisition status.

The latest Teledyne DALSA frame grabber driver issues the acquisition start command by default.

Parameters - Visibility: Guru		X	
Category	Parameter	Value	
Camera Information	Acquisition Mode	Continuous	
Acquisition and Transfer Control	Acquisition Status	True	
Sensor Control	Acquisition Start	Press	
	Acquisition Stop	Press	
	<< Less		
Advanced Processing			
Image Format Controls			
CLHS Link Transport Layer			
File Access Control			

Figure 13: CamExpert Acquisition and Transfer Control Category

Test Patterns

When setting test patterns, the camera set the digital gains to 1x, the digital offsets to 0, and deactivates the flat field correction. This ensures that the test patterns appear as they should. At the same time, the camera saves the last set of values that were used for video processing and restores them when video output is restored.

Use CamExpert to easily enable and select any test pattern from the drop menu while the camera is not in acquisition mode. Select live grab to see the pattern output.

The Test Pattern feature is available in the Image Format Controls category:

Parameters - Visibility: Guru						
Category	Parameter	Value				
Camera Information	Width	10720				
Acquisition and Transfer Cont	Height	8064				
Servers Control	Offset X	0 0 Mono16				
	Offset Y					
I/O Controls	Pixel Format					
Advanced Processing	Pixel Color Filter None					
Image Format Controls	Pixel Coding	Mono				
CLHS Link Transport Layer	Pixel Size	Bpp16				
File Access Control	Test Image Selector	Off	•			
	Test Image Static Value	Off	*			
Feature Display Name: Test Imag	Grey Horizontal Ramp Grey Vertical Ramp Purity					
SNEC and/or as provided by the devi	GreyDiagonalRamp	Ŧ				

SNFC and/or as provided by the device manufacturer. GreyDiagonalRamp

Figure 14: CamExpert Image Format Controls Category

Table 10: Test Patterns

Test Pattern	Description
Grey Horizontal Ramp	Image is filled horizontally with an image that goes from the darkest possible value to the brightest. The ramp repeats every 4096 horizontal pixels.
Grey Vertical Ramp	Image is filled vertically with an image that goes from the darkest possible value to the brightest. The ramp repeats every 4096 vertical pixels.
Purity	Image is filled with an image that goes from the darkest possible value to the brightest by 1 DN increment per frame (12-bit output).
Gray Diagonal Ramp	This test pattern is the sum of the horizontal and vertical test patterns.
Static Value	All pixels are set to testImageStaticValue.
PRNU	This is the 2 times the sum of a horizontal test pattern that repeats every 64 pixels and a vertical test pattern that repeats every 62 lines plus + testImageStaticValue. This test pattern can be used to test FPN and PRNU correction.

Gain and Black Level Control Details

Gain and black level adjustments are available in the cameras. The analog black level and analog gain are factory calibrated and not adjustable by the user. It is possible to optimize the image by adjusting the digital offset controls and gain controls. The color camera features a per color gain ahead of the system gain block. The user can evaluate gain and black level using CamExpert.

Note: The sensor digitizes at 12-bits and transfers the data across the link as 12-bit. If the data is stored as 12-bit, then it is possible to optimize the image with post processing.

Features and Limitations:

- Analog Black Level offset is not available to the user.
- Analog Gain is not available to the user.
- **[Digital Before FFC]Global FPN** provides a constant component to the FPN Coefficients. This value is calibrated in the factory but it can be adjusted relative to the factory setting (factory setting). See the *BlackLevel* feature *DigitalAll1* [Digital Before FFC] option. The value is expressed as a floating point to allow for increased accuracy when processing a frame sum of more than 1 frame.
- **[Digital After FFC] Background Subtract** is a digital number that is used to reduce the baseline pixel value. When combined with the system gain, this value is used to increase contrast in the final output. See the *BlackLevel* feature *DigitalAll2* [Digital After FFC] option. The value is expressed as a floating point to allow for increased accuracy when processing a frame sum of more than 1 frame.
- **System (Digital) Gain** is expressed as a multiplication factor applied after the Color Gain (color camera only) and any FFC stages. When combined with the background subtract, this value is used to increase contrast in the final output.
- **Background Add** is a number added to the image data before it is clipped at zero. This value can be used to prevent the image clipping to zero. The factory uses the 2nd step FPN algorithm for color cameras, where a small amount of light equal to (approximately 50 DN) the least responsive channel is achieved and the FPN coefficient is recalculated. For a color camera, the more responsive channels have about 130 DN output. The Background Add is used to add this average level of signal back into the output value so that 0 light nominally results in 0 output. The 2 step FPN is used to reduce errors in pixel values at low light level due to nonlinear pixel behavior.

Exposure Controls

Exposure Control modes define the method and timing of how to control the sensor integration period. The integration period is the amount of time the sensor is exposed to incoming light before the video frame data is transmitted to the controlling computer.

- Exposure control is defined as the start of exposure and exposure duration.
- The start of exposure can be an internal timer signal (free-running mode), an external trigger signal, or a software function call trigger.
- The exposure duration can be programmable (such as the case of an internal timer) or controlled by the external trigger pulse width.

The camera can grab images in one of three ways. The three imaging modes are determined using a combination of the Exposure Mode parameters (including I/O parameters), Exposure Time and Frame Rate parameters.

Table 11: Imaging Modes

Description	Frame Rate	Exposure Time	Trigger Source
Internal frame rate and exposure time	Internal, programmable	Internal programmable	Internal
External frame rate and exposure time	Controlled by external pulse	External	External
EXSYNC pulse controlling the frame rate. Programmed exposure time.	Controlled by external pulse	Internal programmable	External

Internally Programmable Frame Rate and Internally Programmable Exposure Time (Default)

Frame rate has priority over exposure time when adjusting the frame rate or exposure time. When setting the frame rate, exposure time will decrease, if necessary, to accommodate the new frame rate. When adjusting the exposure time the range is limited by the frame rate.

Note: The camera will not set frame periods shorter than the readout period and the frame rate is limited to 12 Hz when sending 16-bit data and summing a single frame, due to cable bandwidth limitations.

Camera Features:

- <u>TriggerMode</u> = Off
- <u>AcquisitionFrameRate</u> = 16 (for example)
- <u>ExposureMode</u> = Timed
- <u>ExposureTime</u> = 10000 (for example)

Figure 15: Internally Programmable Frame Rate and Exposure Time (Default)

External Frame Rate and External Exposure Time (Trigger Width)

In this mode, EXSYNC sets both the frame period and the exposure time. The rising edge of EXSYNC marks the beginning of the exposure and the falling edge initiates readout.

Camera Features:

- <u>TriggerMode</u> = On
- <u>ExposureMode</u> = Trigger Width
- <u>TriggerSource</u> = GPIO Input 1

Figure 16: External Frame Rate and External Exposure Time (Trigger Width)

External Frame Rate, Programmable Exposure Time

In this mode, the frame rate is set externally with the falling edge of EXSYNC generating the rising edge of a programmable exposure time.

Camera Features:

- <u>TriggerMode</u> = On
- <u>ExposureMode</u> = Timed
- <u>ExposureTime</u> = 10000 (for example)
- <u>TriggerSource</u> = GPIO Input 1

Figure 17: External Frame Rate, Programmable Exposure Time

Exposure Time

Exposure time is the amount of time that the sensor is allowed to accumulate charge before being read. The user can set the exposure time when the *ExposureMode* feature is set to *Timed*. The limitations on the maximum exposure time are listed below:

- External Exposure Time: 100 µs (min) to 1 second (max).
- Internal Exposure Time: (1 / frame rate) *0.95

Note: The maximum exposure time is dependent on the frame rate. To increase maximum exposure time, decrease the frame rate. If using an internal exposure time with an external trigger, it may be necessary to reduce exposure time to increase the frame rate.

Trigger Modes

The camera's image exposures are initiated by a trigger signal. The trigger event is either a programmable internal signal used in free running mode, an external input used for synchronizing exposures to external triggers, or a programmed function call message by the controlling computer. These triggering modes are described below.

- Free running (trigger disabled): The camera free-running mode has a programmable internal timer for frame rate and a programmable exposure period.
- External trigger: Exposures are controlled by an external trigger signal. The external trigger signal can be either a Camera Link HS trigger message or a general purpose input (for example, GPIO [2 : 1]. General purpose inputs are isolated by an opto-coupler input with a time programmable debounce circuit.
- Software trigger: An exposure trigger is sent as a control command via the command channel. Software triggers cannot be considered time accurate due to communications latency and sequential command jitter.

Internal Frame Rate

The frame rate is dependent on the number of rows in read, and the summing mode. Frame rate takes priority over exposure time. Maximum exposure time can be increased by lowering frame rate.

I/O Block Diagram

The following diagram describes the Input / Output features of the camera and how they are related.

Figure 18 I/O Module Block Diagram
Opto-Coupled Inputs

The camera provides two sets of opto-isolated input signals. These can be used as external trigger sources. The signals should be in range from 2.4 V to 24 V, 5 V typical. See the <u>lineDetectionLevel</u> feature.

The delay between signals at the I / O pin and the internal timing core is a function of the signal swing and the typical latency @ 5V swing is 3.5 μ s.

Refer to Figure 8: 12-pin Hirose Circular Male Power Plug—Power Connector for the connector pin out and electrical information. The cable shell and shield should electrically connect the camera chassis to the computer chassis for maximum EMI protection.

Figure 19 Opto-coupled input

Each input incorporates a signal debounce circuit (following the opto-coupler) to eliminate short noise transitions that could incorrectly be interpreted as a valid pulse. The duration is user programmable from 1 μ s to 255 μ s using CamExpert.

Opto-Coupled Outputs

The outputs are unpowered devices and require external power. The simplified diagram below demonstrates the need for a pull-up resistor (when using the outputs).

Figure 20: Simplified General Purpose Output Diagram

Flat Field Correction and Defective Pixel Detection Overview

The Flat Field correction function consists of using two coefficients per pixel which correct the gain and offset of the corresponding pixel. These corrections compensate for the Photo-response Nonuniformity (PRNU) and Fixed Pattern noise (FPN) attributes unique to each camera sensor. In addition, the camera supports replacement of defective pixels (hot, dead, blinking) with a value based on neighborhood pixels.

Parameters - Visibility: Expert			×
	Parameter	Value	-
Camera Information	Correction Type	Area-Based	
Acquisition and Transfer Cont	Current Active Set	User Flat Field 1	_
Sensor Control	Pixel X Coordinate	Not Enabled	
	Pixel Y Coordinate	Not Enabled	
/O Controis	Pixel Gain(PRNU)	Not Enabled	
Advanced Processing	Pixel Base Offset(FPN)	Not Enabled	
mage Format Controls	Pixel Delta Offset(FPN)	Not Enabled	
CLHS Link Transport Layer	Clear Coefficients	Not Enabled	
ile Access Control	Offset(FPN) Calibration	Not Enabled	
	Gain Calibration Target	79.980469	
	Calibration Sample Size	Average 64 images	
	Gain(PRNU) Calibration	Not Enabled	
	Save Calibration	Not Enabled	
	Copy Source	User Flat Field 1	
	Copy Coefficient to Active	Not Enabled	-

The Flat Field correction features are grouped in the <u>Advanced Processing</u> category:

Figure 21: CamExpert Advanced Processing Category

Correction Function Block Diagram

The following simplified block diagram shows the processing chain that is applied to the image data (the flat field and defective pixel blocks are highlighted). Note that each processing block can be activated and deactivated independently. For example, the FPN and PRNU coefficients can be applied independently or together using the <u>flatfieldCorrectionMode</u>.

Figure 22 Flat field and defective pixel processing

Dark Row Subtract Algorithm

The dark row subtract algorithm can be enabled, disabled, or set to off. The camera ships from the factory with this feature enabled.

This algorithm improves the time stability of the FPN output from the sensor. The <u>Dark Row</u> <u>Subtract Mode</u> feature has 3 modes: Off, Disabled, Enabled.

When off, the dark rows from the image sensor are output in the first 32 rows of the image, the image is shifted by 32 rows, and the top 32 rows of the image are not output. This mode is used to measure and determine if any of the black rows are defective. Defective rows can be excluded from the dark row subtract average using the <u>Dark Row Defect Mask</u> feature.

When disabled, the normal image is passed through this module without change.

When enabled, the average of the non-defective dark rows from the current and previous frame are averaged on a per column basis and this average is subtracted from the raw sensor data. This results in the average output of the column to be near zero and, as a result, the <u>Dark Row Subtract</u> <u>Digital Offset</u> feature is used to add an offset back into the data so that no zero value clipping occurs and FPN coefficients are correctly calculated. The camera ships with a value of 50 DN and correction coefficients are calculated with the function enabled. Users need to ensure that the FPN / PRNU coefficients in use were calculated with the current setting of the Dark Row Subtract Algorithm.

Flat Field Correction Algorithm Description

Flat Field Correction Algorithm (feature: *flatfieldCorrectionAlgorithm*) applies the following FFC formula for correcting pixel values:

newPixelValue_{x,y} = (sensorPixelValue_{x,y} - FFCOffsetBase_{x,y} - normalized FFCOffsetDelta_{x,y}) * FFCGain_{x,y}

Where:

- x & y are the Flat Field Correction Pixel coordinates. (See the <u>flatfieldCorrectionPixelXCoordinate</u> and <u>flatfieldCorrectionPixelYCoordinate</u> features.)
- **newPixelValue** is the pixel value after Flat Field Correction is applied.
- **sensorPixelValue** is the pixel value before Flat Field correction is applied.
- **FFCOffsetBase** is one offset coefficient value to subtract from the sensorPixelValue, this value is measured at minimal exposure time.
- **FFCOffsetDelta** is another offset coefficient value to subtract from the sensorPixelValue. This value is measured at current exposure time, and is the deviation from FFCOffsetBase. The normalization operation scales the stored **FFCOffsetDelta** by multiplying (current integration time) / (calibration integration time). FFCOffsetDelta is measured immediately after **FFCOffsetBase**.
- **FFCGain** is the gain coefficient value that is multiplied with the sensorPixelValue.

The implementation of this formula requires that both the FPN and PRNU coefficient are stored in 32 bits. Internally in Falcon4, we reserve 9 bits for the FFCOffsetBase, 9 bits for FFCOffsetDelta (FPN) coefficient and 14 bits for the FFCGain (PRNU) coefficient.

General Notes on FFC calibration

The camera comes calibrated with two factory sets, one for each shutter mode. In addition to the factory calibrations, the camera provides three user-configurable FFC sets. These can be calibrated and saved in the camera.

Another option is to perform the flat field correction in the frame grabber.

In either case, Teledyne DALSA recommends repeating the correction when a temperature change of greater than 10 °C occurs.

For best results, ensure that:

- Gain (PRNU) calibration has a clean, white reference. The quality of this reference is important for proper calibration. White paper is often not sufficient because the grain in the white paper will distort the correction. White plastic or white ceramic will lead to better balancing.
- Ambient light flicker (for example. fluorescent lights) is sufficiently low not to affect camera performance and calibration results.
- The average pixel should be at least 20 % below the target output. If the target is too close, then some pixels may not be able to reach full swing due to correction applied by the camera.
- When 6.25 % of pixels from a single row within the region of interest are clipped to zero or max value, flat field correction results may be inaccurate.
- Correction results are valid only for the Dark Row Subtract settings for which the coefficients were calculated. If you change this value, it is recommended that you recalculate your coefficients.
- Appendix D has more details.

Important Note on Command Timeout Errors

PRNU, FPN, and S1 calibration commands can take up to 5 minutes to run. CamExpert has a default timeout of 20 seconds per command, which is too short for the calibration commands to run fully. An error message will appear after the command has timed out specifying that the camera failed to set the feature value:

Error: SetFeatureValue fail to set information of "flatfieldCalibration S1 calibration" parameter.

However, the calibration command is still running if the Camera Status LED is green and blinking. Once this LED becomes a solid green, the calibration command has finished running. The user can also change the default timeout using the following steps:

You can change the default timeout by setting a command line argument in the short-cut:

- Right click on the short-cut in the start menu and select properties.
- Add -timeout 600 to increase the command timeout to 10 minutes (See below)
- Repeat for desktop short-cut

🐒 Sapera CamExper	t Properties	×
Security	Details	Previous Versions
General	Shortcut	Compatibility
Saper	a CamExpert	
Target type: Ap	plication	
Target location: Ca	mExpert	
Target: S	apera\CamExpert\Ca	mExpert.exe" -timeout 600

Figure 23: Setting the Camera's Timeout Value

Important Note on Window Blemishes

When flat field correction is performed, window cleanliness is paramount. The figure below shows an example of what can happen if a blemish is present on the sensor window when flat field correction is performed. The blemish will cast a shadow on the wafer. FFC will compensate for this shadow by increasing the gain. Essentially FFC will create a white spot to compensate for the dark spot (shadow). As long as the angle of the incident light remains unchanged then FFC works well. However, when the angle of incidence changes significantly (i.e. when a lens is added) then the shadow will shift and FFC will makes things worse by not correcting the new shadow (dark spot) and overcorrecting where the shadow used to be (white spot). While the dark spot can be potentially cleaned, the white spot is an FFC artifact that can only be corrected by another FFC calibration.

Performing an FFC Setup in the Camera

The calibration is performed in two steps. The offset FPN (base and Delta) is determined first by performing an averaging without any light. This calibration determines exactly how much offset to subtract per pixel in order to obtain flat output when the sensor is not exposed to light. If the calibration finds any defective pixels, where its FPN base value is greater than Pixel Replacement Offset Threshold, or its PRNU value is greater than Pixel Replacement Gain Threshold, the pixel can be replaced if <u>Pixel Replacement Mode</u> is Active.

The gain (PRNU) calibration is performed next to determine the multiplication factors required to bring each pixel to the required value (target) for flat, white output. For the monochrome cameras, the target is determined by the user (See <u>flatfieldCalibrationTarget</u>).

It is important to do the FPN correction first. Results of the FPN correction are used in the PRNU procedure.

The following procedure provides a flat field calibration example:

- The camera is placed in **internal exposure and frame rate**. Ensure that the area of interest (AOI) is set to the full window (that is, Width = SensorWidth and Height = SensorHeight). No other exposure mode or AOI configuration will allow FFC calibration. See <u>ExposureMode</u>, <u>TriggerMode</u>, <u>OffsetX</u>, <u>OffsetY</u>, <u>Width</u>, <u>Height</u>.
- Settings such as frame rate, exposure time, etc. are set as close as possible to the actual operating conditions. Set system gain [All Digital] to 1 and background subtract to 0, as these are the defaults during FFC calibration. See <u>GainSelector</u>, <u>Gain</u>, <u>BlackLevelSelector</u>, and <u>BlackLevel</u>.
- 3. Select **correction active set to user flat field x**. Go to **flat field correction mode**, select **calibration**. See <u>*flatfieldCorrectionCurrentActiveSet*</u>, and <u>*flatfieldCorrectionMode*</u>.
- 4. Clear existing coefficients. See *flatfieldCalibrationClearCoefficient*.
- 5. It is recommended to set Dark Row Subtract function to Enabled as this corrects for column offsets every frame and improves camera stability over time. The FPN coefficient calculation result is impacted by the Dark Row Subtract. It is the user's responsibility to ensure the coefficient set in use was calculated with the current setting of the Dark Row Subtract function. When enabling the Dark Row Subtract function, the DarkRowSubtract Digital Offset should be set to 50.
- Place the camera in the dark (e.g. cover the lens), select FPN Calibration Step No as First Step and run FPN Calibration. This performs the FPN correction and saves the FPN coefficients to temporary memory. See <u>flatfieldCalibrationFPN</u>. <u>flatfieldFPNCalStep</u> Calibration mode enables both FPN and PRNU correction. Verify signal output is close to 0 DN.
- 7. Illuminate the sensor to 65% saturation for monochrome cameras. For color cameras, try to adjust the light level equally above and below 55% for the most and least responsive color. Ensure a high-quality white reference is used.
- 8. Set the Flat Field Calibration Algorithm to PRNU: Customer Target.
- Set flat field target to 80 % saturation (monochrome only). For color cameras, set the flat field target to 1.2x the average of the highest responding color. See <u>flatfieldCalibrationTarget</u>.

10. Run Gain (PRNU) calibration. See *flatfieldCalibrationPRNU*.

A defective pixel will be replaced if Pixel Replacement Mode is Active. A defective pixel is defined as a pixel whose FPN base value is greater than Pixel Replacement Offset Threshold or / and whose PRNU value is greater than Pixel Replacement Gain Threshold.

11. Save the flat field calibration: *flatfieldCalibrationSave*.

More information is found in <u>Appendix C</u>.

Defective Pixel Detection and Replacement

The camera has three methods of replacing pixels.

- 1. Single pixel replacement uses the FFC coefficients to mark pixels that will be replaced.
- 2. Defective columns or rows marked as defective use the median filter algorithm to replace the defect pixel.
- 3. The dynamic pixel replacement method uses a median filter to replace a given pixel value with the median value when its original value is above / below a threshold when compared to adjacent pixels of the same color.

These three methods can be individually controlled. However, <u>Pixel Replacement Mode</u> controls both Pixel Replacement Mode and Row/Col Replacement Mode. This means that to enable the Row/Col Replacement mode, the Pixel Replacement Mode must be set to Active.

The example screenshot below shows Pixel Replacement Mode set to Off while Row/Col Replacement Mode is set to Active for Row 1. In this configuration, while Row 1 is set to be replaced, it will not be replaced because Pixel Replacement Mode is set to Off; to replace row 1 Pixel Replacement Mode must be changed to Active.

Category	Parameter	Value
Board	AOI Width	Not Enabled
Basic Timing	Calibration Sample Size	Average 64 images
Advanced Control	flatfieldCalibration S1 calibration	Press
E devel Times	flatfield Correction S1	
External Ingger	Gain(PRNU) Calibration	Not Enabled
Image Buffer and ROI	Save Calibration	Not Enabled
Attached Camera - Xtiu	Copy Source	User Flat Field 1
Camera Information	Copy Coefficient to Active	Not Enabled
Acquisition and Transfer C	Pixel Replacement Mode	Off
Sensor Control	Pixel Replacement Offset Threshold	511.875
1/0 Controls	Pixel Replacement Gain Threshold	3.999
Advected December	Pixel Replacement Algorithm	2D Median
Advanced Processing	Pixel Replacement Row or Column Selector	Row
Image Format Controls	Pixel Replacement Row or Column No	1
CLHS Link Transport Layer	Row/Col Replacement Mode	Active
File Access Control	Pixel Replacement Clear	Press

<u>In the default factory settings the Pixel Replacement Mode is set to Off</u>. The user must change <u>Pixel</u> <u>Replacement Mode</u> to Active for the factory set replacements take effect in the image output. To have Pixel Replacement Mode set to Active on startup the user must set this mode to Active and save it to a user set.

Single Pixel Replacement

This is a technique for the elimination of dead or hot pixels.

The camera uses the FFC coefficients to indicate which pixels need to be replaced. If a pixel has a Gain (PRNU) coefficient that is greater than the <u>defectivePixelReplacementGainThreshold</u> then the pixel will be marked for replacement. Additionally, a pixel will be replaced if its Base Offset (FPN) coefficient that is greater than the offset pixel replacement threshold (<u>defectivePixelReplacementOffsetThreshold</u>). Lowering these thresholds will remove more pixels with high gain and offset coefficients.

Most hot and dead pixels will be identified when an FPN or PRNU calibration is performed in camera. The user can also manually mark a pixel for replacement by setting its Pixel Base Offset to 511.

The replacement algorithm is shown below in the <u>Median Filter</u> section.

Defective Columns and Row Replacement

Defective rows and columns are marked during factory calibration but users can add or remove defective rows and columns to / from the list. By default, the rows and columns marketed to be replaced align with the factory defect map that is stored in the camera. The Row/Col Replacement Mode can be set to Off, which does not replace the defective rows and columns, or Active to hide defective rows and columns. To clear all rows and columns from the list, use the Pixel Replacement Clear function.

To add or remove a defective Row or Column, use the following steps:

- 1) Select Row or Column using the Pixel Row or Column Selector.
- 2) Set the Row or Column Id using the Pixel Replacement Row or Column Number field.
- 3) Set Row/Col Replacement Mode to Active or Off as desired. Note: this will be applied to the currently selected Row or Column Id from step 2).
- 4) The modified list can be saved in a user set.

Teledyne DALSA recommends that the user update the user defect map file after making changes to the row/col replacement to keep track of which rows or columns are set to be replaced in the user set.

The median filter algorithm, described in the following section, is used to replace defection rows and columns.

Median Filter

Enable the median filter by setting the <u>medianFilter</u> to Active (Image Format Controls). Setting this filter to Off disables the medianFilter.

When the Median Filter is Active, then the Median Filter Threshold value controls the decision to replace the pixel value. Replacement occurs when a pixel's current value differs from the median value of a 3×3 kernel by more than the threshold value. The pixel is replaced by the median value of a 3×3 kernel.

The algorithm is described below for monochrome cameras. Color cameras use the pixels of same color in the matrix.

- 1. 3X3 2D median filter algorithm
 - a. First step calculation the 5 elements median value Pm1 and Pm2

b. Second step calculation the 3 elements median

 $Med\{P5, Pmx, Pmc\} => Pm;$

c. Third step check the threshold(8-bit value and default=255)

```
if (|P5 - Pm| > threshold) then
    P5 output <= Pm;
else
    P5 output <= P5;
end if;</pre>
```

2. Defect Pixel Replacement 3x3 2D Replacement

Each pixel with input defect flag associated if the flag is 1 the pixel will be do the 2D median filter but without check threshold.

File Access via the CamExpert Tool

Click on the "Setting..." button to show the file selection menu.

File Access C	Control ×
Select the ty	pe of file to upload or download from the device.
— File Tune Δ) vailable
Tune:	Device Firmware
1300.	
File select	tor: Firmware
Descriptic Note: Dep transfer cr	on: Writing a new firmware here will update the camera pending on the file size and communication speed, the ould take many minutes, but must not be aborted.
File path:	
C:\Ironman.	cbf Browse
Up	Download Delete
	Close

Figure 25 Initial File Access Control Dialog

From the Type drop menu, select the file type that will be uploaded to the camera.

Device Firmware Flat Field Coefficients	
Miscellaneous	

From the File Selector drop menu, select the camera memory location for the uploaded data. This menu presents only the applicable data locations for the selected file type.

Logs	
Factory Defect Map	
User Defect Map	
Test File	

Click the Browse button to open a typical Windows Explorer window. Select the specific file from the system drive or from a network location. Click the Download button to execute the file transfer from the Falcon4. Note that firmware changes require a device reset command.

Technical Specifications

Mechanicals

EC & FCC Declaration of Conformity

We: Teledyne DALSA inc. 605McMurray Road, Waterloo, Ontario, Canada, N2V 2E9

Declare under sole legal responsibility that the following products conform to the protection requirements of council directive 2004/108/EC (2014/30/EU after April 2016) on the approximation of the laws of member states relating to electromagnetic compatibility and are CE-marked accordingly:

FA-SO-86M16-01-R and FA-S1-86M16-00-R

The products to which this declaration relates are in conformity with the following relevant harmonized standards, the reference numbers of which have been published in the Official Journal of the European Communities:

EN55032 (2012)	Electromagnetic compatibility of multimedia equipment — Emission requirements
EN55011 (2009)	Industrial, scientific and medical equipment — Radio-
with A1(2010)	frequency disturbance characteristics — Limits and methods
	of measurement
EN 61326-1 (2013)	Electrical equipment for measurement, control and laboratory
	use — EMC requirements — Part 1: General requirements
EN 55024 (2010)	Information technology equipment — Immunity
	characteristics — Limits and methods of measurement

Further declare under our sole legal responsibility that the product listed also conforms to the following international standards:

CFR 47	Part 15 (2008), subpart B, for a class A product. Limits for digital devices
ICES-003	Information Technology Equipment (ITE) — Limits and Methods of Measurement
CISPR 11	Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement
CISPR 32	Electromagnetic compatibility of multimedia equipment - Emission requirements

Note: this product is intended to be a component of a larger system.

Waterloo, Canada. 2015 Apr.13

Hank Helmond Director, Quality Assurance

Hand

Appendix A: GenICam Commands

This appendix lists the available GenICam camera features. Access these features using the CamExpert interface.

Parameters in gray are read only, either always or due to another parameter being disabled. Parameters in black are user set in CamExpert or programmable via an imaging application.

Features listed in the description table but tagged as *Invisible* are typically reserved for Teledyne DALSA Support or third party software usage, and not typically required by end user applications.

Additionally the Standard & View column will indicate which parameter is a member of the custom DALSA Features Naming Convention (denoted by **DFNC**), versus the GenICam Standard Features Naming Convention (SFNC not shown) along with their view attribute.

Camera Information Category

The camera information group provides general information about the camera. Parameters such as camera model and firmware version uniquely identify the connected device. As well, temperature can be monitored and user sets can be saved and loaded to and from the camera's non-volatile memory using the features grouped here.

Category	Parameter	Value
Camera Information	Device Vendor Name	Teledyne DALSA
Acquisition and Transfer Cont	Device Model Name	FA_S0_86M16_01_F
Sensor Control	Device Family Name	Falcon4
	Device Version	255.194.143
/O Controls	Firmware Version	03-081-20384-10
Advanced Processing	Device ID	C123456
Image Format Controls	Device User ID	
CLHS Link Transport Layer	Device Reset	Press
File Access Control	Device Temperature Selector	FPGA Board
	Device Temperature	44.187
	Refresh Temperature	Press
	Device Bist Test	Press
	Device Bist Status	0
	Refresh Bist Status	Press
	Power-up Configuration	Setting

Figure 26 CamExpert Camera Information Category

Camera Information Feature Descriptions

Display Name	Feature & Values	Description	Standard & View
Device Vendor Name	DeviceVendorName	Displays the device vendor name. (RO)	Beginner
Device Model Name	DeviceModelName	Displays the device model name. (RO)	Beginner
Device Family Name	DeviceFamilyName	Displays the device family product name. (RO)	Beginner
Device Version	DeviceVersion	Displays the device version. This tag will also highlight if the firmware is a beta or custom design. This is an automatically generated number that specifically identifies the software build. (RO)	Beginner
Firmware Version	DeviceFirmwareVersion	Displays the currently loaded firmware version number. Firmware files have a unique number and have the .cbf file extension. (RO)	Beginner
Device ID	DeviceID	Displays the device's factory set camera serial number. (RO)	Beginner

Device User ID	DeviceUserID	Feature to store a user-programmable identifier of up to 15 characters. The default factory setting is the camera serial number. (RW)	Beginner
Device Temperature Selector	DeviceTemperatureSelector	Select the source where the temperature is read. (RW)	Beginner
FPGA Board	FPGABoard	Read FPGA Board temperature.	
Sensor Board	SensorBoard	Read sensor board temperature.	
Sensor	Sensor	Read sensor temperature.	
Device Reset	DeviceReset	Resets the device to its power up state. (W)	Beginner
Device Temperature	DeviceTemperature	Displays the device temperature in degrees Celsius. Depending on the host application (e.g. GUI). This value is a polled value and may automatically be updated every second. Otherwise the value will only be updated upon connection or when the Refresh Temperature selector is pressed.	Beginner
Refresh Temperature	readTemperature	Refreshes the temperature reading. (W)	Beginner DFNC
Device Bist Test	DeviceBistTest	Command to perform an internal test which will determine the device status. (W)	Beginner DFNC
Device Bist Status	deviceBistStatus	 BIST errors are indicated in binary values indicating pass/fail (0/1) at the bit position. Available BIST error codes include: Bit16: FPGA echo error Bit17: under temperature Bit18: over temperature Bit19: sensor link lock error 	Beginner DFNC
Refresh Bist Status	deviceRefreshBist	Refresh BIST status.	Beginner DFNC
Device Voltage	DeviceVoltage	The applied voltage to the image sensor. (RO)	Beginner
User Set Default Selector	UserSetDefaultSelector	Selects the camera configuration set to load and make active on camera power-up or reset. The camera configuration sets are stored in camera non-volatile memory. (RW)	Beginner
Factory	Factory	Load factory-calibrated defaults.	
UserSet1 to UserSet 4	UserSet1 to UserSet4	Select the user defined configuration (UserSet1 to UserSet8) as the Power-up Configuration.	
User Set Selector	UserSetSelector	Selects the camera configuration set to load feature settings from or save current feature settings to. The Factory set contains default camera feature settings. User camera configuration sets contain features settings previously saved by the user. (RW)	Beginner

Factory Set	Factory	Select the default camera feature settings saved by the factory.	
<i>User Set 1</i> <i>to</i> <i>User Set 4</i>	UserSet1 to UserSet4	Select the User Defined Configuration space (UserSet1 to UserSet8) to save to or load from features settings previously saved by the user.	
User Set Load	UserSetLoad	Loads the camera configuration set specified by the User Set Selector feature, to the camera and makes it active. (W)	Beginner
User Set Save	UserSetSave	Saves the current camera configuration to the user set specified by the User Set Selector feature. The user sets are located on the camera in non-volatile memory. Disabled when <i>flatfieldCorrectionMode</i> = Calibration or <i>UserSetSelector</i> = Factory. (W)	Beginner
Device Reset	DeviceReset	Resets the device to its power up state. (W)	Beginner
DFNC Major Rev	deviceDFNCVersionMajor	Major revision of Dalsa Feature Naming Convention which was used to create the device's XML. (RO)	DFNC Invisible
DFNC Minor Rev	deviceDFNCVersionMinor	Minor revision of Dalsa Feature Naming Convention which was used to create the device's XML. (RO)	DFNC Invisible
Device FPAG Info	deviceFPAGInfo	FPGA version information (date : time)	DFNC Invisible

Acquisition and Transfer Control Category

The acquisition and transfer control category, as shown by CamExpert, group acquisition and transfer specific parameters.

Category	Parameter	Value
Camera Information	Acquisition Mode	Continuous
Acquisition and Transfer Cont	Acquisition Status	False
Sensor Control	Acquisition Start	Press
VO Controls	Acquisition Stop	Press
Advanced Processing	<< Less	
CLHS Link Transport Layer		
File Access Control		

Figure 27 CamExpert Acquisition and Transfer Control Category

Acquisition and Transfer Control Feature Descriptions

Display Name	Feature & Values	Description	Standard & View
Acquisition Mode	AcquisitionMode	Acquisition mode of the camera.	Beginner
Continuous	Continuous	<i>Frames are captured continuously until stopped with the Acquisition Stop command.</i>	
Acquisition Status	AcquisitionStatus	This feature reports if the camera is currently transmitting image data. $<$ RO $>$	Beginner
Acquisition Start	AcquisitionStart	Starts the acquisition of the device. The number of frames captured is specified by Acquisition Mode feature.	Beginner
Acquisition Stop	AcquisitionStop	Stops the acquisition of the device at the end of the current frame(s) sequence.	Beginner

Sensor Control Category

Category	Parameter	Value	
Camera Information	Device Scan Type	Areascan	
Acquisition and Transfer Cont	Sensor Color Type	Monochrome	
Sensor Control	Sensor Width	10720	
	Sensor Height	8064	
Advanced Processing Image Format Controls CLHS Link Transport Layer	Frame Rate (in Hz)	5.0 Timed 10002	
	Exposure Mode		
	Exposure Time		
	Gain Selector	All Digital	
File Access Control	Gain	1.0	
	Black Level Selector	Digital Before FFC	
	Black Level	0.0	
	Shutter Mode	Global	
	<< L	ess	

The camera sensor controls, as shown by CamExpert, group sensor specific parameters.

Figure 28 CamExpert Sensor Control Category

Sensor Control Feature Descriptions

Display Name	Feature & Values	Description	Standard & View	
Device Scan Type	DeviceScanType	Scan type of the sensor. < RO>	Beginner	
Area scan	Areascan	2D area scan sensor.		
Sensor Color Type	sensorColorType	Defines the camera sensor color type. $<$ RO $>$	Beginner	
Monochrome Sensor	Monochrome	Sensor color type is monochrome. (RO)	DFNC	
CFA Bayer Sensor	CFA_Bayer	Sensor color type is Bayer Pattern.(RO)		
Sensor Width	SensorWidth	Defines the sensor width in active pixels. < RO>	Expert	
Sensor Height	SensorHeight	Defines the sensor height in active lines. < RO>	Expert	

Frame Rate (in Hz)	AcquisitionFrameRate	Specifies the camera internal frame rate, in Hz. (Read-only when <i>TriggerMode</i> = "On") 1 to x Hz (where x is a calculated maximum) The maximum value of the frame rate is the result of a complicated formula and is dependent on the following features: <i>Height, summingMode, pixelformat</i> Note that any user entered value is automatically adjusted to a valid camera value.	Beginner
Exposure Mode	ExposureMode	Sets the operation mode for the camera's exposure.	Beginner
Timed	Timed	The exposure duration time is set using the Exposure Time feature and the exposure starts with a LineStart event.	
Trigger Width	TriggerWidth	Uses the width of the trigger signal pulse to control the exposure duration. Use the Trigger Activation feature to set the polarity of the trigger. The Trigger Width setting is active when the Trigger Mode is On and a signal (e.g. Line 1) is selected as the trigger source. These features are found in the I/O Control category.	
Exposure Time	ExposureTime	Sets the exposure time (in microseconds) when the Exposure Mode feature is set to Timed.	Beginner
Gain Selector	GainSelector	Selects which channel's gain is controlled when adjusting gain features.	
All Digital	DigitalAll	Apply a digital gain adjustment to the entire image.	Beginner
Digital Red	DigitalRed	<i>Bayer Camera Only.</i> Red pixels.	
Digital Blue	DigitalBlue	<i>Bayer Camera Only.</i> Blue pixels.	
Digital Green Blue	DigitalGreenBlue	Bayer Camera Only.	
Digital Green Red	DigitalGreenRed	Green pixels that share same row as blue.	
Gain	Cain	Sets the selected gain as an amplification factor applied to the image (PW)	Beginner
Black Level Selector	BlackLevelSelector	Selects which black level (i.e. dark offset) is controlled when adjusting the black level feature.(RW)	Deginner
Digital Before FFC	DigitalAll1	Global FPN. Apply black level adjustment to all digital channels or taps, before flat field correction.	Beginner
Digital After FFC	DigitalAll2	Background Subtract. Apply black level adjustment to all digital channels or taps, after flat field correction.	
Background Add	BackgroundAdd	Add a digital value to the image before FFC (tbc)	
Black Level	BlackLevel	Sets the Black level (offset) in DN selected by the BlackLevelSelector (RW)	Expert

Shutter Mode	shutterMode	Determines the exposure mode used by the sensor (RW)	
Glob	d Global	All pixels integrate simultaneously and then held constant until they can be read. This is at the cost of higher noise.	Guru
Rollir	g Rolling	The rows of the sensor integrate light at slightly different times. This can cause image artifacts. Especially if the scene is moving.	

I/O Control Category

The camera's I / O controls, as shown by CamExpert, group features used to configure external inputs and acquisition actions based on those inputs, plus camera output signals to other devices.

Parameters - Visibility: Guru			
Category	Parameter	Value	
Camera Information	Trigger Selector	FrameStart	
Acquisition and Transfer Cont	Trigger Mode	Off	
Sensor Control	Trigger Source	Not Enabled	
	Software Trigger	Not Enabled	
1/O Controls	Trigger Delay (in us)	Not Enabled	
Advanced Processing	Line Selector	General Purpose Input 1	
Image Format Controls	Line Mode	Input	
CLHS Link Transport Layer	Line Pinout	H1_Pin6Pos_Pin5Neg	
File Access Control	Line Debouncing Period	1	
	Line Inverter	True	
	Line Status	True	
	Output Line Source	Not Enabled	
	Output Line Pulse Duration (in Us)	Not Enabled	
	Output Line Value	Not Enabled	
	Line Detection Level	2.4V Threshold	
	Line Status All	0x0000000000000000FD	
	Output Line Software Latch Control	Not Enabled	
	Output Line Software Command	Not Enabled	
	Sensor Digital Signal Source	VSS	
	<< Less		

Figure 29 CamExpert I/O Control Category

I/O Controls Feature Descriptions

Display Name	Feature & Values	Description	Standard & View
Trigger Selector	TriggerSelector	Displays the type of trigger to configure with the various Trigger features. <ro></ro>	Beginner
FrameStar	FrameStart	Selects a trigger starting the capture of a single frame.	
Trigger Mode	TriggerMode	Enables and disables external frame trigger.(RW)	Beginner
Of	Off	Use an internal trigger.	
Or	On	Use an external trigger. This option is not available while in Calibration Mode.	

Trigger Source	TriggerSource	Specifies the internal signal or input line to use as the trigger source. (RW)	
		The trigger mode must be set to On.	
Software	Software	Software trigger through the TriggerSoftware command.	
LinkTrigger0	LinkTrigger0	CLHS trigger message from the FG.	
Line1	Line1	General Purpose Input Line 1	
Line2	Line2	General Purpose Input Line 2	
Software Trigger	TriggerSoftware	Generate an internal trigger. Available when the trigger mode is enabled and the trigger source is equal to Software.(W)	Beginner
Trigger Delay	TriggerDelay	Specifies the delay in microseconds to apply after the trigger reception before activating it. Possible values are: 0 - $1*10^{6}\mu$ s	Beginner
LineSelector	LineSelector	Selects the logical line of the device to configure.(RW)	Beginner
General Purpose Input 1	Line1	General Purpose Input 1	
General Purpose Input 2	Line2	General Purpose Input 2	
General Purpose Output 1	Line3	General Purpose Output 1	
General Purpose Output 2	Line4	General Purpose Output 2	
Line Mode	LineMode	Returns if the selected physical pin is used as an input or output signal. <ro></ro>	Beginner
Input	Input	The selected physical pin is used as an input.	
Output	Output	The selected physical pin is used as an output.	
Line Pinout	linePinAssociation	Gets the physical pin location associated with the logical line. The H1 prefix refers to the Hirose Power and input cable (see Figure 8). <ro></ro>	DFNC Beginner
H1_Pin6Pos_Pin5Neg	H1_Pin6Pos_Pin5Neg	General Purpose Input 1:	
		Hirose Pin 6 Positive, Pin 5 Negative.	
H1_Pin11Pos_Pin12Neg	H1_Pin11Pos_Pin12Neg	General Purpose Input 2:	
		Hirose Pin 11 Positive, Pin 12 Negative.	
H1_Pin3_Pin4	H1_Pin3_Pin4	General Purpose Output 1:	
LII Dia 7 Dia 0	H1 Din7 Din0	Coporal Purpose Output 2:	
		Hirose Pin 7, Pin 8.	

Line Debouncing Period	lineDebouncingPeriod	Specifies the minimum length of an input line voltage transition before recognizing a signal transition. Available when the Line Selector is set to an input. Each input line stores its own debouncing period.(RW) Possible values are: 1 to $255 \ \mu s$.	DFNC Beginner
Line Inverter	Line Inverter	Controls whether to invert the selected input or output line signal. (RW)	Beginner
True	True	Invert signal.	
False	False	Do not invert signal.	
Line Status	LineStatus	Returns the current status of the selected input or output line. This is a polled feature that requires the host to poll the camera for the latest value.(RO)	Beginner
True	True	Selected signal is high.	
False	False	Selected signal is low.	
Output Line Source	outputLineSource	Selects which internal signal or software control state to output on the selected line. The pulse is defined by <i>outputLinePulseDelay and outputLinePulseDuration.(RW)</i>	DFNC Beginner
		Note: the Line Mode feature must be set to Output.	
Off	Off	The output line is open.	
Software Controlled	SoftwareControlled	The value of the output line is determined by <i>outputLineValue, outputLineSoftwareCmd.</i>	
Pulse On: Start of Exposure	PulseOnStartofExposure	Generate a pulse when the sensor actually starts exposing its pixels. (Slight delay after EXSYNC).	
Pulse On: End of Exposure	PulseOnEndofExposure	Generate a pulse when the sensor stops exposing its pixels.	
Pulse On: Start of Readout	PulseOnStartofReadout	Generate a pulse when the sensor starts reading its pixels.	
Pulse On: End of Readout	PulseOnEndofReadout	Generate a pulse when the sensor stops reading its pixels.	
Pulse On: GP Input 1	PulseOnInput1	Generate a pulse when the General Purpose Input 1 goes active.	
Pulse On: GP Input 2	Pulse OnInput2	Generate a pulse when the General Purpose Input 2 goes active.	
Output Line Pulse Duration (in µs)	outputLinePulseDuration	Sets the duration of the output pulse (RW) 1 to100, 000 µs Note: LineMode feature must be set to Output and outputLineSource is not equal to Off or SoftwareControlled.	DFNC Beginner

Output Line Value	outputLineValue	Selects the state of the output on the selected line. (RW) The Value will be applied immediately if the outputLineSoftwareLatchControl feature is equal to OFF.					DFNC Beginner
		The Value will be applied when the <i>outputLineSoftwareCmd</i> feature is set if the <i>outputLineSoftwareLatchControl</i> feature is equal to LATCH.					
		Note: <i>LineMode</i> feature must be set to Output and <i>outputLineSource</i> set to SoftwareControlled.				utLineSource	
Active	Active	Sets the Output circuit to	close.				
Inactive	Inactive	Inactive - Sets the Output	circuit to	open.			
Line Detection Level	lineDetectionLevel	The voltage at which the signal is treated as a logical high. Available when the Line selector is set to a general purpose input (GPI). (RW) Note: This value is for both general purpose inputs (i.e. setting this value sets it for both Line 1 and Line 2).				gh. Available (GPI). (RW) setting this	DFNC Beginner
2.4V Threshold	Threshold_2_4	2.4V threshold: for TTL inputs					
Threshold_6_0	Threshold_6_0	6V threshold: for 12V input					
Threshold_12_0	Threshold_12_0	12V threshold: for 24V input					
Line Status All	LineStatusAll	Returns the current status of all available line signals, at time of polling, in a single bitfield. This is a polled feature that requires the host to poll the camera for the latest value. <ro></ro>			Beginner		
		The order is Line1(LSB), L	ine2, Line	3, Line4/		-	-
		7 to 4	3	2	1	0	
		Not used	Line 4	Line 3	Line 2	Line 1 (LSB)	
Output Line Software Latch Control	outputLineSoftwareLatch Control	The software latch allows the user to set more than 1 output simultaneously(RW)			DFNC Beginner		
		<i>OutputLine</i> that are currer with the value in <i>OutputLin</i> feature.	ntly in Soft neValue w	ware Latc ith the <i>out</i>	h control v tputLineSo	vill only set oftwareCmd	
Off	Off	f Changes to the output line value are applied immediately.					
Latch	Latch	Changes to the output line Software Command is trig	e value are gered.	applied w	hen the O	output Line	

Output Line Software Command	outputLineSoftwareCmd	Contains a bit field outputLineValue va	DFNC Beginner	
		Value		
		0	Do not apply any value	
		1	Apply outputLineValue of Output1	
		2	Apply outputLineValue of Output2	
		3	Apply outputLineValue of Output1 and Output2	
		Note: LineMode fea is set SoftwareCon	ature must be set to Output and outputLineSource trolled.	

Advanced Processing Control Category

The camera's Advanced Processing controls, as shown in CamExpert, group parameters used to configure Defective Pixel Detection, Flat Field calibration.

Category	Parameter	Value
Camera Information	Correction Mode	Off
Acquirition and Transfer Cont	Current Active Set	User Flat Field 1
Acquisition and Transfer Cont	Pixel X Coordinate	Not Enabled
Sensor Control	Pixel Y Coordinate	Not Enabled
I/O Controls	Pixel Gain(PRNU)	Not Enabled
Advanced Processing	Pixel Base Offset(FPN)	Not Enabled
Image Format Controls	Pixel Delta Offset(FPN)	Not Enabled
CLHS Link Transport Layer	Clear Coefficients •	Not Enabled
File Access Control	FPN calibration step No	Not Enabled
Production Features	Offset(FPN) Calibration	Not Enabled
roduction Features	Gain Calibration Target	79.980469
	Calibration Sample Size	Average 64 images
	Gain(PRNU) Calibration	Not Enabled
	Save Calibration	Not Enabled
	Copy Source	User Flat Field 1
	Copy Coefficient to Active	Not Enabled
	Pixel Replacement Mode	Off
	Pixel Replacement Offset Threshold	511.875
	Pixel Replacement Gain Threshold	3.999
	Pixel Replacement Algorithm	2D Median
	Pixel Replacement Row or Column Selector	Row
	Pixel Replacement Row or Column No	1
	Pixel Replacement Mode	Off

Figure 30 CamExpert Advanced Processing Category

Display Name	Feature & Values	Description	Standard & View
Correction Mode	flatfieldCorrectionMode	Sets the mode for flat field correction.(RW)	DFNC
Off	Off	Flat field correction is disabled.	Beginner
Active	ActiveAll	Flat field correction is enabled. FPN and PRNU correction is active.	
Active, FPN Only	ActiveFPNOnly	FPN correction is active.	
Active, PRNU Only	ActivePRNUOnly	PRNU correction is active.	
Calibration	Calibration	The camera is configured to calibration mode (Only available when TriggerMode = Off, flatfieldCorrectionCurrentActiveSet is not FactoryFlatfield,).	
		The device may automatically adjust some features in the camera when calibration mode is enabled. The features that are automatically adjusted are device specific. The device will not restore these features when the flat field correction mode is changed from calibration mode to another mode.	
		It is not available for FactoryFlatfield1 [Global Shutter Factory Flat Field] FactoryFlatfield2 [Rolling Shutter Factory Flat Field].	
		It is not available for external mode, and it is not available for AOI smaller than 2048 horizontal.	
Current Active Set	flatfieldCorrectionCurrentActiveSet	Specifies the current set of flat field coefficients to use. This feature cannot be changed while the camera is in flat field calibration mode. Read-Write (Read-Only when in Calibration Mode).	DFNC Beginner
Global Shutter Factory Flat Field	FactoryFlatfield1	Factory calibrated flat field for Global Shutter Mode	
Rolling Shutter Factory Flat Field	FactoryFlatfield2	Factory calibrated flat field for Rolling Shutter Mode.	
User Flat Field 1	UserFlatfield1	User Flat Field 1 to User Flat Field 3: User configurable flat field sets	
to User Flat Field 3	to UserFlatfield3		
Pixel X Coordinate	flatfieldCorrectionPixelXCoordinate	Specifies the X coordinate of the flat field pixel coefficient to access. (RW) To configure, set Correction Mode to Calibration. Range: 1 to SensorWidth	Beginner
Pixel Y Coordinate	flatfieldCorrectionPixelYCoordinate	Specifies the Y coordinate of the flat field pixel coefficient to access. (RW) To configure, set Correction Mode to Calibration. Range: 1 to SensorHieght	DFNC Beginner
Pixel Gain(PRNU)	flatfieldCorrectionGain	Sets the gain to apply to the currently selected pixel. Range is from 1 to 4, as float. To configure, set Correction Mode to Calibration.	
Pixel Base Offset(FPN)	flatfieldCorrectionOffsetBase	Sets the offset to apply to the currently selected pixel. It is measured at the minimal exposure time at dark.	Beginner

Advanced Processing Control Feature Descriptions

		To use, set the Correction Mode feature to Calibration.	
Pixel Delta Offset(FPN)	flatfieldCorrectionOffsetDelta	Sets the offset to apply to the currently selected pixel. Measured at the current exposure time at dark with a subtraction of flatfieldCorrectionOffsetBase. Range is 0 to 511, as float. Read-Write when in Calibration Mode.	
Clear Coefficients	flatfieldCalibrationClearCoefficient	This feature is used to clear all the current FPN and PRNU coefficients in the selected Active Set. (W) Read-Write when in Calibration Mode	DFNC Expert
FPN calibration step No	flatfieldFPNCalStep	This feature selects the FPN calculation method. (RW)	DFNC Expert
First Step	First	When the Offset Calibration is commanded, the base FPN value and the delta FPN value are calculated.	
Second Step	Second	When the Offset Calibration is commanded the base FPN value is calculated and not the delta FPN. The purpose is to enable calibration with a small amount of light to avoid the nonlinear behavior near zero illumination. A recommended illumination level is 50 DN.	
Offset (FPN) Calibration	flatfieldCalibrationFPN	Performs fixed pattern noise (FPN) calibration. FPN calibration eliminates fixed pattern noise by subtracting all non-uniformities and dark current to obtain near 0 DN output in the dark (no light exposed to the sensor). This currently can take up to 5 minutes. Read-Write when in Calibration Mode	DFNC Expert
AutoBrightness OffsetX	autoBrightnessOffsetX	 Bayer Camera Only. Sets the start of the area in the x direction for pixels included in the color PRNU Target average.(RW) Has minimum value 0 and increments in multiples of 32. Non multiples of 32 are rounded down to the nearest multiple. The autoBrightnessWidth may need to be reduced to increase this value. The minimum width is 64. autoBrightnessOffsetX <= 10720- autoBrightnessWidth. 	DFNC Beginner
AutoBrightness OffsetY	autoBrightnessOffsetY	Bayer Camera Only. Sets the start of the area in the y direction for pixels included in the color PRNU Target average.(RW) Is automatically increased if the OffsetY is increased and has minimum value OffsetY+2. This parameter increments in multiples of 2 The autoBrightnessHeight may need to be reduced before this value can be increased. autoBrightnessOffsetY <= OffsetY+Height -4-autoBrightnessHeight.	DFNC Beginner
AutoBrightness Height	autoBrightnessHeight	Bayer Camera Only. Determines the number of rows to include in the average used to set the PRNU targets for color sensors.(RW) The minimum autoBrightnessHeight is 4 rows and the maximum is Height-4. The autoBrightnessheight is increased in multiples of 2 and	DFNC Beginner

		if an odd number is entered, the entry will be rounded down when possible. Also the AutoBrightnessOffsetY may need to be decreased before increasing this parameter.	
		autoBrighitnessHeight = < OffsetY+Height-2-autoBrightnessOffsetY	
AutoBrightness Width	autoBrightnessWidth	Determines the number of columns to include in the average used to set the PRNU targets for color sensors. (RW)	DFNC Beginner
		The minimum autoBrightnessWidth is 64 columns and the maximum is Width is 10720. The width is increased in multiples of 32 and entries will be rounded down to a multiple of 32. Also, the AutoBrightnessOffsetX may need to be decreased before increasing this parameter.	
		autoBrightnessWidth <= 10720 -autoBrightness	
Flatfield Calibration Algorithm	flatfieldCorrectionAlgorithm	Selects the algorithm to use for calibration of flat field PRNU coefficients. (RW)	DFNC Beginner
PRNU: Customer Target	PRNU_Customer_Target	The following formula is used to calculate the flatfield corrected pixel:	
		Monochrome	
		During operation:	
		<pre>correctedPixelValuex,y = (sensorPixelValuex,y - DarkRowSubtract- FFCOffsetx,y -currentIntTime/CalIntTime*DeltaFPNxy) * FFCGain[x][y]</pre>	
		* The FPN coefficients must be calculated with the intended DarkRowSubtractMode (on or off)	
		FFCOffsetx,y = the average offset value per pixel that is measured when the sensor is dark at the minimum integration time, with or without the DarkRowSubtract function enabled.	
		DeltaFPNxy is average value per pixel measured at the calibration integration time -the FPNoffsetxy	
		FFCGainxy is calculated under approximately 50% illumination and is the result of the following calculation	
		FFCGainxy = Target/(Average signalxy -	
		DarkRowSubtract- FFCOffsetx,y – currentIntTime/CalIntTime*DeltaFPNxy)	
		It is recommended that the target be set 20% higher than the average scene value.	
		Color	
		During operation the equation, when enabled is	
		correctedPixelValuex,y = (sensorPixelValuex,y - DarkRowSubtract- FFCOffsetx,y -currentIntTime/CalIntTime*DeltaFPNxy) * FFCGain[x][y]	
		The dark offsets are calculated as above.	

PRNU: Auto Color Gain	PRNUautoColorGain		The PRNU coefficient is calculated using customer entered per color targets. It is recommended these values be 1.2x the measured color average. FFCGainxyr/g/b = Targetr/g/b/(Average signalxy – DarkRowSubtract- FFCOffsetx,y – currentIntTime/CalIntTime*DeltaFPNxy) White balance gains are set to unity and saved with the coefficient set. The calculation equations are the same as above, however the target value is determined by the camera over the Area of Interest controlled by the entries of the AutoBrightnessXXX parameters. The target value is Targetx = Averagex*1.2 Where x is the specific color/ or mono. In this mode the white balance gains are stored with the PRNU coefficients and are set as WBgain most responsive color = 1, WBgainColor1/2= MostresponsiveColor / (Color1/2Avg)	
Gain Calibration Target Selector	flatfieldColorTargetSelector		Selects the color PRNU target that the Gain Calibration Target is applied to. (RW) Mono cameras do not have this selector.	DFNC Expert
Red Target		TargetRed	Select calibrate target to digital red channel.	
Green Target		TargetGreen	Select calibrate target to digital green channel.	
Blue Target		TargetBlue	Select calibrate target to digital blue channel.	
Gain Calibration Target	flatfieldCalibrationTarget		Sets the target pixel value for the gain (PRNU) calibration for the respective color when in calibration mode, method 1. (RW) It is specified as a percentage of the output range (for example, 2048 DN for 12-bits = 50%). Range is 0 to 100 %, as float. All three colors need to be entered for the color camera and a single	DFNC Expert
			value entered for the monochrome camera. It is recommended the flatfieldCalibrationTarget = colorAverage*1.2.	
			PRNU calculation method 2 uses image statistics to calculate the target values and flatfieldCalibrationTarget is not used.	
			For Color Cameras: method 1 sets the white balance gain factors to unity for the PRNU coefficient set, while Method 2 stores the white balance gain factors needed to achieve white balance.	
Calibration Sample Size	flatfieldCalibrationSampleSize		The number of images to average to perform the calibration.(RW)	DFNC
Average 256 images		Avg256	Average 256 images. Recommended for PRNU calculation.	Beginner
Average 128 images		Avg128	Average 128 images. Recommended for FPN calculation.	
Average 64 images		Avg64	Average 64 images.	
Average 32 images		Avg32	Average 32 images.	
Average 16 images		Avg16	Average 16 images. Read-Write when in Calibration Mode.	

	Gain(PRNU) Calibration	flatfieldCalibrationPRNU	Performs photo response non-uniformity (PRNU) calibration. (W) PRNU calibration eliminates the difference in responsivity between the most and least sensitive pixel, creating a uniform response to light. Pixels that fall outside gain range of 1 to 4 for their color are marked as defective. Write when in Calibration Mode	DFNC Expert
	Save Calibration	flatfieldCalibrationSave	Saves the current flat field coefficients in the Active Set to the corresponding non-volatile memory. (W) The color camera also stores the individual color gains and system gain. Write when in Calibration Mode.	DFNC Expert
	Copy Source	flatfieldCoefficientsCopySource	Selects the flatfield coefficients set to copy to the current Active Set. Read-Write when in Calibration Mode	DFNC Expert
	Global Shutter Factory Flat Field	FactoryFlatfield1	Factory calibrated flat field for Global Shutter Mode	
	Rolling Shutter Factory Flat Field	FactoryFlatfield2	Factory calibrated flat field for Rolling Shutter Mode.	
	User Flat Field 1 to User Flat Field 3	UserFlatfield1 to UserFlatfield3	User Flat Field 1 to User Flat Field 3: User configurable flat field sets	
	Copy Coefficient to Active	flatfieldCoefficientsCopyInCurrent	Copies the currently selected by flatfieldCoeffiecientsCopySource to the Active Set. Write when in Calibration Mode	DFNC Expert
	Pixel Replacement Mode	defectivePixelReplacementMode	Enable or disable pixel replacement. (RW) If Active: If FPNx,y > defectivePixelReplacementOffsetThreshold OR PRNUx,y > defectivePixelReplacementGainThreshold, then Pixelx,y is replaced using the algorithm below.	DFNC Expert
	Off	Off	Disable pixel replacement	
	Active	Active	Enable defective pixel replacement	
	Pixel Replacement Offset Threshold	defectivePixelReplacementOffsetThreshold	The FFC base + integration time scaled delta offset value (FPN) above which the pixel are deemed hot pixels and replaced. This value can be adjusted to replace more or fewer pixels. (RW) Possible values are:1 to 4096, as float	DFNC Guru
	Pixel Replacement Gain Threshold	defectivePixelReplacementGainThreshold	The FFC gain value (PRNU) above which the pixel are deemed dead pixels and replaced. This value can be adjusted to replace more or fewer pixels.(RW) Possible values are:1 to 4, as float	DFNC Guru
	Pixel Replacement Algorithm	defectivePixelReplacementAlgorithm	Selects the pixel replacement algorithm. (RO) There is a separate register to enable/disable Pixel Replacement.	DFNC Expert
		2D Median	The median filter algorithm determines the median value of the same color pixels in the immediate surroundings of the pixel in question. If the median value differs from the value of the pixel in question by more than the value entered into the medianfilterthreshold register, then the median value replaces the current pixel value.	
l			If the current pixel is marked as defective, then the median value	

		replaces the current value regardless of the calculation.	
Pixel Replacement Row or Column Selector	rowColInterpolationSelector	Determines if the Pixel Replacement Row or Column Number is for Rows or Columns (RW)	DFNC Expert
Row	DefecticeRow	Selects row processing configuration to edit.	
Column	DefectiveColumn	Selects column processing configuration to edit	
Pixel Replacement Row or Column No	rowColInterpolationTableIndex"	The column or row which is selected to be defined as having the median filter active or not active for the pixels in the column or row.(RW)	DFNC Expert
Row/Col Replacement Mode	defectiveRow/ColReplacementMode	When set to Active the entire row or column of pixel values are replaced with the median value. This is an independent control from the FPN/PRNU defect threshold. (RW)	DFNC Expert
Off	Off	Disable defective row/col replacement.	
Active	Active	Enable defective row/col replacement.	
Pixel Replacement Clear	PixelReplacementClear	Clears all Active rows and columns from being included in the defect replacement and sets them to Off.	DFNC Expert
FPN Base Defect Count	flatfieldCalibrationFPNBaseDefectCount	Reports the number of defect pixels detected in FPN base calibration.	DFNC Guru
FPN Delta Defect Count	flatfieldCalibrationFPNDeltaDefectCount	Reports the number of defect pixels detected in FPN delta calibration.	DFNC Guru
PRNU Defect Count	flatfieldCalibrationPRNUDefectCount	Reports the number of defect pixels detected in PRNU delta calibration.	DFNC Guru
Dark Row Subtract Mode	DarkRowSubtractMode	The dark row subtract function measures the sensor dark row pixels and forms an average for each column which is subtracted, according to selected mode, from the pixel data. This module corrects for column based offsets and uses at most 28 of the 32 available sensor dark rows. (RW)	
		It should be noted that FPN coefficients should be calculated and used under the same Dark Row Subtract Mode.	
Off	Off	The black rows are output on image row 0 to 31, followed by the normal image rows shifted 32 rows. The highest 32 rows of image are not displayed. The values of the pixels are not altered by the Dark Row Subtract Module.	
Disabled	Disabled	The video data is passed through without being modified or shifted.	
Enabled	Enabled	The average of the DarkRowAverageCurrentFrame and the previous DarkRowAverageCurrentFrame is found and then subtracted from all the image pixels. VideoOut(x, y) = Raw(X, y) = (DarkRowAverageCurrentFrame(x)/2, +	
		DarkRowAveragePreviousFrame(x)/2)	
Dark Row Subtract Digital Offset	DarkRowSubtractDigitalOffset	The value entered is added to the 12-bit data and is used to ensure that the data leaving the Dark Row Subtract Module is > 0 . This allows for correct FPN coefficient calculation. (RW)	DFNC Guru
Dark Row Defect Mask	DarkRowDefectMask	This is a mask which can exclude any dark row of the 16 dark rows at the bottom of the image sensor (row 0 to 15) or at the top of the	DFNC Guru

		<pre>image sensor (row 16 to 31). The bit mask is one hot and rows 0,15,16 and 31 are always marked as excluded. Mandatory set bits are shown below: (Bit 31Bit0) Mask = 0x80018001</pre>	
Dark Row Defect Threshold	DarkRowDefectThreshold	The value entered is checked against every dark pixel. If a single pixel is found to be greater than the threshold, then the entire row is dynamically excluded from the DarkRowAverageCurrentFrame.	DFNC Guru

Image Format Controls Category

The camera Image Format controls, as shown by CamExpert, group parameters used to configure camera pixel format, and image cropping. Additionally, a feature control to select and output an internal test image simplifies qualifying a camera setup without a lens.

Category	Parameter	Value
Camera Information	Width	10720
Acquisition and Transfer Cont	Height	8064
Sensor Control	Offset X	0
	Offset Y	0
I/O Controls Advanced Processing	Pixel Format	Mono12 / BayerGB12
	Pixel Color Filter	None
Image Format Controls	Pixel Coding	Mono
CLHS Link Transport Layer	Test Image Selector	Off
File Access Control	Test Image Static Value	Not Enabled
	Summing Mode	Off
	Summing Count (in Frame)	Not Enabled
	Burst Mode	Not Enabled
	Median Filter	Off
	Median Filter Threshold	255

Figure 31 CamExpert Image Format Control Category

Image Format Control Feature Descriptions

Display Name	Feature & Values	Description	Standard & View
Width	Width	Width of the Image provided by the device which ranges up to the SensorWidth in multiples of 32 pixels (in pixels).(RW)	Beginner
Height	Height	Height of the Image provided by the device (in lines) which ranges up to the SensorHeight in multiple of 2 rows.(RW)	Beginner
Offset X	OffsetX	Horizontal offset from the Sensor Origin to the Area Of Interest (in pixels). (RW) Note Width must be reduced first. The offset is a multiple of 32 pixels.	Beginner
Offset Y	OffsetY	Vertical offset from the Sensor Origin to the Area Of Interest (in pixels). Note Height must be reduced first and is a multiple of 2 rows.	Beginner
Pixel Format	PixelFormat	Output image pixel coding format of the sensor.	Beginner
Mono12/BayerGB12	Mono12	Mono12 or BayerGB 12-Bit	
Mono16/BayerGB16	Mono16	Mono16 or BayerGB 16-Bit	

Pixel Color Filter	PixelColorFilter	Indicates the type of color filter applied to the image. <ro></ro>	Beginner
BayerGB	BayerGB	Color Sensor (color camera)	
None	None	No filter applied on the sensor (monochrome camera)	
Pixel Coding	PixelCoding	Output image pixel coding format of the sensor. <ro></ro>	Beginner
BayerGB	BayerGB	Color Sensor	
Мопо	Мопо	Monochrome format	
Test Image Selector	TestImageSelector	Selects the type of test image output by the camera. See the Test Patterns section for more information. Flatfield correction will be disabled if the user selects the PRNU value.	Beginner
Off	Off	Image is from the camera sensor.	
Grey Horizontal Ramp	GreyHorizontalRamp	Image is filled horizontally with an image that goes from the darkest possible value to the brightest.	
Grey Vertical Ramp	GreyVerticalRamp	Image is filled vertically with an image that goes from the darkest possible value to the brightest.	
Purity	Purity	Image is filled with an image that goes from the darkest possible value to the brightest by 1 DN increment per frame.	
Grey Diagonal Ramp	GreyDiagonalRamp	Image is filled horizontally and vertically with an image that goes from the darkest possible value to the brightest by 1 DN increment per pixel.	
Static Value	Static Value	User-specified static value. The value is set using the testImageStaticValue feature.	
PRNU	PRNU	This is 2 times the sum of a horizontal test pattern that repeats every 64 pixels and a vertical test pattern that repeats every 62 lines plus + testImageStaticValue. This test pattern can be used to test FPN and PRNU correction.	
Test Image Static Value	testImageStaticValue	Pixel value to use for test image when the <i>TestImageSelector</i> feature is set to "Static Value". Read-Write when TestImageSelector is either PRNU, or StaticValue. Possible values are: 0 to 4095	DFNC Beginner
Summing Mode	summinaMode	Enables camera summing mode.	DFNC
Off	Off	The camera will output 1 frame at a time.	Guru
Active	Active	<i>.</i> The camera will sum 2 or more frames and output the summed image	
Summing Count (in frame)	summingCount	Specifies the number of frames to sum. Read-Write when summingMode is Active. Possible values are: 2 to 8, in increments of 1.	DFNC Guru
Burst Mode	summingBurst	Enables camera summing burst mode. This mode effects the maximum frame rate (i.e. AcquistionFrameRate). Read-Write when summingMode is Active.	
Active	Active	When the camera is triggered (either internally or externally), it will generate a series (summingCount) of internal triggers at the maximum frame rate. For example, when the camera is set to a frame rate of 1 Hz in this mode, and the summingCount = 4, the camera will generate 4 triggers at the maximum frame rate every second.	

Off	Off	The camera to average the specified number of frames (summingCount) as it receives the internal or external frame triggers.	
Median Filter	medianFilter	Enable 3X3 2D median filter. This filter applies on the whole image.	DFNC
Active	Active	Active: The camera will use 3x3 2D median filter	Guru
Off	Off	The camera will not use 3x3 2D median filter	
Median Filter Threshold	medianFilterThreshold	Specifies the median filter threshold. If the difference between the current pixel and median of its neighbor pixels is greater than this value, the current pixel will be replaced. Possible values are 0 to 2048, in increments of 1.	DFNC Guru
CLHS Link Transport Layer Category

The camera's CLHS Link Transport Layer category groups parameters used to document and configure the Camera Link HS input and output of the camera.

Category	Parameter	Value
Camera Information	PortID	0
Acquisition and Transfer Cont	Avail Ports	1
Sensor Control	Actual Device Config	1
Sensor Control	Next Device Config	1
1/O Controis	Device Configure Index	1
Advanced Processing	Activate Hot Plug	Press
Image Format Controls	8b/10b Error Count	0
CLHS Link Transport Layer	Refresh Features	Press
File Access Control	Reset Link Error	Press
	CameraLink HS Speed in Mbps	3,125 Mbits/s
	<< Less	

Figure 32 CamExpert CHLS Link Transport Layer Category

Camera Link Transport Layer Feature Descriptions

Display Name	Feature & Values	Description	Standard & View
PortID	PortID	The logical number of the CLHS port used. A CLHS port is defined as a command channel and may include the video channel carried by a cable. <ro> Possible values are: 0 to 4294967295</ro>	DFNC Beginner
Avail Ports	AvailPorts	Number of ports available on this device. <ro></ro>	DFNC Beginner
Actual Device Config	ActualDeviceConfig	The current index of the device configuration. <ro></ro>	DFNC Beginner
Next Device Config	NextDeviceConfig	The next configuration of the device to use on the next hot plug event. Possible values are 1 or 2.	DFNC Beginner
Device Configurre Index	DeviceConfigureIndex	Index selector for the device configuration. Possible values are 1 or 2.	DFNC Beginner
Activate Hot Plug	ActivateHotPlug	 Performs a Hot Plug event. This event will cause the camera to: disconnect from the frame grabber load the configuration specified by <i>NextDeviceConfig</i> if it has changed since the last connection reconnect to the frame grabber. 	DFNC Beginner

8b/10b ErrorCount	LinkErrorCount	Indicates the number of low level data errors on the connection between the camera and frame grabber. <ro> Possible values are: 0 to 4294967295</ro>	DFNC Beginner
Refresh Features	RefreshFeatures	Refresh features on the CLHS Link Transport Layer page.	DFNC Beginner
Reset Link Error	ResetLinkError	Resets the Link Error Counter to 0.	DFNC Beginner
CameraLink HS Speed in Mbps	clDeviceClockFrequency	Indicates the Camera Link HS clock frequency. The CLHS clock runs at 3125 Mbits/second.	DFNC Beginner

File Access Control Category

The File Access control in CamExpert allows the user to quickly upload various data files to the connected camera. The supported data files are for camera firmware updates, Flat Field coefficients, debug files, logs, defect maps.

Parameters - Visibility: Guru				
Category	Parameter	Value		
Camera Information	Upload/Download File	Setting		
Acquisition and Transfer Cont	<< Less			
Sensor Control				
I/O Controls				
Advanced Processing				
Image Format Controls				
CLHS Link Transport Layer				
File Access Control				

Figure 33 CamExpert File Access Control Category

File Access Control Feature Descriptions

Display Name	Feature & Values	Description	Standard & View
File Selector FileSelector		Selects the file to access. The file types which are accessible are device-dependent.	Guru
Firmware	Firmware1	<i>Firmware1</i> Writing a new firmware here will update the camera.	
<i>User Flat Field 1 to User Flat Field 3</i>	FlatFieldCoefficients1 to FlatFieldCoefficienets3	A tiff containing the flat field correction coefficients (i.e. gain and offset)	
Factory Global Flatfield	FlatFieldCoefficientsFact1	A tiff containing the factory flat field correction coefficients for global shutter operation (i.e. gain and offset)	

Factory Rolling Flatfield	FlatFieldCoefficientsFact2	2 A tiff containing the factory flat field correction coefficients for rolling shutter operation (i.e. gain and offset)	
Logs	Logs	Download camera logs. This is a zipped file	
Factory Defect Map FactoryDefectMap		Download camera defect map.	
User Defect Map	UserDefectMap	File that allows user to test file transfer.	
File Size	FileSize	Represents the size of the selected file in bytes.	Guru
File Open Mode	FileOpenMode	Selects the access mode used to open a file on the device.	Guru
Read	Read	Select READ only open mode	
Write	Write	Select WRITE only open mode	
File Operation Selector	FileOperationSelector	Selects the target operation for the selected file in the device. This operation is executed when the File Operation Execute feature is called.	Guru
Open	Open	Select the Open operation - executed by FileOperationExecute.	
Close	Close	Select the Close operation - executed by FileOperationExecute	
Read	Read	Select the Read operation - executed by FileOperationExecute.	
Write	Write	Select the Write operation - executed by FileOperationExecute.	
Delete	Delete	Select the Delete operation - executed by FileOperationExecute.	
File Operation Execute	FileOperationExecute Executes the operation selected by File Operation Selector on the selected file.		Guru
File Access Offset	FileAccessOffset Controls the mapping offset between the device file storage and the file access buffer.		Guru
File Access Length	FileAccessLength	Controls the mapping length between the device file storage and the file access buffer.	Guru
File Operation Status	FileOperationStatus	Displays the file operation execution status. (RO)	Guru
Success	Success	The last file operation has completed successfully.	
Failure	Failure	The last file operation has completed unsuccessfully for an unknown reason.	
File Unavailable	FileUnavailable	The last file operation has completed unsuccessfully because the file is currently unavailable.	
File Invalid	FileInvalid The last file operation has completed unsuccessfully because the selected file in not present in this camera model.		
File Operation Result	FileOperationResult Displays the file operation result. For Read or Write operations, the number of successfully read/written bytes is returned. (RO)		Guru
File Access Buffer	FileAccessBuffer	Defines the intermediate access buffer that allows the exchange of data between the device file storage and the application.	Guru

Appendix B: Cleaning the Sensor Window

Recommended Equipment

- Glass cleaning station with microscope within clean room.
- 3M ionized air gun 980 (<u>http://solutions.3mcanada.ca/wps/portal/3M/en_CA/WW2/Country/</u>)
- Ionized air flood system, foot operated.
- Swab (HUBY-340CA-003) (http://www.cleancross.net/modules/xfsection/article.php?articleid=24)
- Single drop bottle (FD-2-ESD)
- E2 (Eclipse optic cleaning system (<u>www.photosol.com</u>)

Procedure

- Use localized ionized air flow on to the glass during sensor cleaning.
- Blow off mobile contamination using an ionized air gun.
- Place the sensor under the microscope at a magnification of 5x to determine the location of any remaining contamination.
- Clean the contamination on the sensor using one drop of E2 on a swab.
- Wipe the swab from left to right (or right to left but only in one direction). Do this in an overlapping pattern, turning the swab after the first wipe and with each subsequent wipe. Avoid swiping back and forth with the same swab in order to ensure that particles are removed and not simply transferred to a new location on the sensor window. This procedure requires you to use multiple swabs.
- Discard the swab after both sides of the swab have been used once.
- Repeat until there is no visible contamination present.

Appendix C: Internal Flat Field Calibration Algorithms

The camera provides the user with the ability to perform a custom flat field calibration. This appendix gives details of the calibration algorithms. All calibration is performed on averaged image data to reduce noise.

Dark Row Subtract

It is recommended that the Dark Row Subtract Algorithm is enabled during camera operation and calibration. The FPN coefficients are impacted by this setting and it is the user's responsibility to ensure that the coefficients in-use were calculated with the current setting of the Dark Row Subtract function.

The Dark Row Subtract Offset should be set to 50 DN when the Dark Row Subtract Algorithm is enabled. This adds a constant 50 DN to all pixel values after the Dark Row Subtract Algorithm, ensuring pixel values are not clipped to zero and FPN coefficients are calculated correctly.

The Dark Row Subtract Algorithm measures the dark rows of the image sensor and forms an average of the ADC offset per column. This average accounts for drift in the ADC value which is subtracted from pixels of the column and results in more stable images, but with a small penalty in read noise.

Offset (FPN) Calibration

Offset calibration is performed when the sensor is not exposed to light.

The camera supports a 2-step FPN calibration algorithm. The first step measures the ADC offsets and photo site integration time dependent dark current. The 2nd step is performed with a small amount of light (50 DN) on the sensor which helps to linearize the camera's response above this light level. Many systems do not require the 2nd step of FPN calibration.

The offset values are calculated as follows when the first step of FPN calculation is performed:

- The camera averages several (see flatfieldCalibrationSampleSize) images (128 frames recommended).
- The offset correction is calculated at each pixel in the dark. It has 2 components: FPN base and FPN delta.
- FPN base is measured at minimal exposure time, and is simply the average value for each pixel in the dark.
- FPN delta is measured at current exposure time, and is the average deviation from FPN base for each pixel in the dark.

Gain (PRNU) Calibration

The flat field gain calibration is performed after the offset calibration, when the sensor is exposed to a flat light source. The gain on each pixel is adjusted to achieve a target value. There are two methods for selecting the correction target: PRNU Customer Target or PRNU Auto Color Gain.

PRNU customer target allows the customer to enter the expected output value after PRNU calibration. For a monochrome camera a single value, % of full scale, is entered, while the color camera enables entry of 3 unique color target values.

Selecting PRNU Auto Color Gain enables the area of interest to be specified using the Auto Brightness, X, Y, Offset and Height, and Width values over which the average of each color is measured and the target set to 1.2 the average value. As a final step for the PRNU Auto Color Gain, the white balance gains are calculated and stored with the coefficient set.

For the monochrome cameras the process is as follows:

- The camera averages several (see *<u>flatfieldCalibrationSampleSize</u>*) images.
- For each pixel of the averaged image (256 frame average is recommended):
 - Subtract the previously calibrated offset values (FPN), which is composed of FPN base and normalized FPN delta
 - Calculate the multiplication factor necessary to achieve the target value. The target value is calculated using *flatfieldCalibrationTarget*.

Figure 34 Monochrome Flat Field Gain Calibration

- If the calculated gain is less than 1 then the pixel is marked as defective. A large number of marked pixels may indicate a poorly chosen target or exposure setting.
- If the calculated pixel gain is not correctable (that is, greater than 4), it will be clipped at 4.
- Once the gain values are calculated, the values are used to correct the image.
- During camera operation the FPN and PRNU defect threshold is programmable and results in a different number of replaced pixels.

Color Camera Gain (PRNU) Calibration

The flat field gain calibration is performed after the offset calibration, when the sensor is exposed to a flat light source. The gain on each pixel is adjusted to achieve a user-entered per-color target value (flatfieldCorrectionAlgorithm = PRNU_Customer_Target) or 1.20 above the specific color's average (flatfieldCorrectionAlgorithm = PRNU_Auto_Gain). In PRNU_Auto_Gain, the gain required to match the output of the highest responding color is saved with the coefficient set and is shown by the gain register when selecting its color.

PRNU calculation algorithm PRNU_Customer_Target requires the user to enter per-color targets before commanding PRNU calculation. Setting all the color targets equal will result in the PRNU coefficients including the white balance gain. It is recommended that users enter values for each color about 20% higher than the color's average.

The PRNU_Auto_Gain algorithm is performed differently for color cameras and makes use of FPGA capabilities to measure the average of each color over a specified area of interest. The user interface uses the autoBrightnessROISelector / width / height / OffsetX / OffsetY to enter the parameters used to determine the region in which the imaging statistics are gathered. The correction coefficients are calculated over the entire image.

The process of PRNU calculation is:

- 1) Set the camera to use an internal frame rate and integration time close to the final values.
- 2) Make the camera dark and perform FPN calculation. This is the same for the monochrome cameras.
- 3) Add uniform white light so that the most responsive color and least responsive color are equally above and below 55% of output level with FPN correction on and PRNU correction off, and with the color and system gains set to unity.
- 4) Set the region over which the averages are calculated (autoBrightnessROISelector / width / height / OffsetX / OffsetY)
- 5) Command PRNU calculation.

The camera's micro code now commands the FPGA to capture the frame average statistic for each color using a single frame.

The micro then finds:

TargetRed = 1.2*AverageR, TargetBlue = 1.2*AverageB, TargetGreenBlue = 1.2*AverageGreenBlue (Green pixels in the blue row) TargetGreenRed = 1.2*AverageGreenRed (Green pixels in the red row)

The micro code then commands the FPGA to perform PRNU calculation.

Micro calculates the color gains and ensures they are stored with the coefficient set.

GainMaxColor = 1 (assume R for this example, as easier to write the description) GainGR = AvgR/AvgGR GainGB = AvgR/AvgGB GainB = AvgR/AvgB

User Interface Rules

- <u>autoBrightnessHeight</u>:minimum 4 rows
- autoBrightnessWidth: minimum 64 columns
- <u>autoBrightnessOffsetX</u>: multiple of 32
- <u>autoBrightnessOffsetY</u>: multiple 2.

The minimum autoBrightnessOffsetY =2+ OffsetY (Avoid the first row of data) The maximum autoBrightnessHeight is such that the last 2 rows of the output data are omitted.

autoBrightnessHeight < Height -4

The autoBrightnessOffset, width and height are automatically pushed smaller with image ROIs but don't automatically increase.

If increasing the autoBrightnessOffsetY, it may be that the autoBrightnessHeight needs to first be reduced before the Y offset can be increased. Remember that the autoBrightnessOffsetY must be a multiple of 2 and if an odd number is entered then the value is rounded down, if it does not conflict with the rule autoBrightnessOffsetY> 2+OffsetY. If the requested offsetY can be increased, but not in its entirety due to the height limitation, then the entered value is automatically adjusted to achieve the maximum allowed without decreasing the autoBrightnessHeight.

autoBrightnessOffsetY = Trunc (CustomerEnteredStatisticOffsety/2) *2

Given that autoBrightnessOffsetY >= OffsetY +2 and autoBrightnessOffsetY <= Offsety + Hieght-2-autoBrightnessHeight

autoBrightnessOffsetx = Trunc((CustomerEnteredStatisticOffsetx)/32)*32 + 1 Width must first be reduced before the offsetx can be increased.

autoBrightnessOffsetx <= 10720- autoBrightnessWidth autoBrightnessWidth = Trunc(CustomerEnteredWidthx/32)*32>=64 <= 10720

Appendix D: FFC File Format

FFC File Format

FFC file is downloaded / uploaded as shown in the following figure:

Fil	e Access Cont	rol	×		
	Select the type of file to upload or download from the device.				
	- File Type Availa	ble			
	Туре:	Flat Field Coefficients			
	File selector:	User Flatfield 1			
	Description:	A tiff containing the flat field correction coefficients(i.e. gain and offset)			
	Note: Depending on the file size and communication speed, the transfer could take many minutes, but must not be aborted.				
	File path:				
		Browse			
	Upload (to Ca	mera) Download (from Camera) Delete			
		Close			

Figure 35: CamExpert File Access Control Dialog

Byte Offset	Name	Value/Note	
0	Signature	"SAPERA_FFC "	
16	Version		
20	Header size		
24	Base OffsetBits	Number of bits of FPN base component: 9	
28	PRNU Gain Bits	Number of bits of PRNU gain	
32	Aoi width	Width of area interest	
36	Aoi height	Height of area interest	
40	Aoi left	Left of area interest	
44	Aoi top	Top of area interest	
48	Sensor width	Width of sensor absolute region	
52	Sensor height	Height of sensor absolute region	
56	Sensor left	Left of sensor absolute region	
60	Sensor top	Top of sensor absolute region	
64		Reserved for other Teledyne Dalsa cameras	
164	nCalTime	Measured exposure time when doing Delta FPN calibration	
168	nBaseTime	Measured exposure time when doing BASE FPN calibration	
172	ADCOffset	Used during FPN calibration	
176	Sensor width	10752	
180	nCoeffFileSize	Cofficient data size in bytes	
184	spare	Reserved for future use	
256 ~	FFC data	Each pixel has 4 bytes. Bit0~bit8 is FPN Base, Bit9~bit16 is FPN delta, Bit17~Bit31 is PRNU.	

Table 12: FCC File Format

The file downloaded to PC is a raw image file, which combines each FPN base, FPN delta, and PRNU into a double word. Teledyne Dalsa provides a standalone command line application (FFC_Codec.exe) to decode this raw image into 3 readable .tif files.

The usage of FFC_Codec.exe is as follows:

```
decode Source File(Binary in camera) Target Files(FPN_Base (tif), Delta
FPN(tif), PRNU FFC(tif))\n");
example: FFC_Codec.exe "decode" "FlatFieldCoefficients.tif" "fpn_base.tif"
"fpn_delta.tif" "prnu.tif";
```

encode Source File Files(FPN_Base (tif), Delta FPN(tif), PRNU FFC(tif))
Target File(Binary in camera)
example: FFC_Codec.exe "encode" "fpn_base.tif" "fpn_delta.tif" "prnu.tif"
"encoded.tif"

Note that when running encode, target file must exist. This is used to extract FFC header info. The initial target file is the FFC raw file downloaded from camera.

After decode the source binary file, one can use other image processing software to view this target tiff file.

Camera Defect Map

The camera defect map file is a text file that contains information on row, column, and cluster defects found during the camera test. This text file is for information purposes only and is not used with any internal camera function.

There are two copies of the file loaded into the camera: a factory version that the user has readonly access to, and a user version that can be overwritten.

The header section at the top of the file (see example below) contains the camera model number, serial number, date when it was tested / the defects were found, and the device firmware in the camera at the time.

The file reports all defects found under rolling shutter, followed by all defects found under global shutter.

The information recorded for each row defect is the top row of the defect, the bottom row of the defect, and the size (number of rows) of the defect. Most row defects are only a single row so the top and bottom row will be the same and the size will be one.

Column defects are reported the same way as row defects except the leftmost and rightmost defective columns are used instead of top and bottom rows for each defect.

For cluster defects the center X and Y coordinates of each defect are recorded along with the number of defective pixels.

For all measurements the top left pixel of the image is (0, 0).

Defect Map File Model Number: FA-S0-86M16-50-R Serial Number: 18014093 Defects found on 2016-02-23 Device Version: 255.137.660 Defects found under rolling shutter: No row defects found. No column defects found. Cluster Defects: (X, Y), Area Cluster1: (523, 4335), 4 (379, 5332), 7 Cluster2: (3374, 6515), 7 Cluster3: Cluster4: (3776, 6636), 97 Defects found under global shutter: No row defects found. No column defects found. Cluster Defects: (X, Y), Area Cluster1: (524, 4335), 6 Cluster2: (379, 5333), 9 Cluster3: (3374, 6515), 7 Cluster4: (3776, 6636), 98

Revision History

Number	Change	Date
00	Initial release of preliminary version to support early consignment cameras	8 November 2016
01	 Fan mounting accessory (AC-MS-00117-00-R) listed Performance specifications table revised Cosmetic sensor specifications revised Angle of Incidence graph added Flash memory size values added Thermal management section added Gain and black level controls diagram revised Opto-coupled outputs diagram revised Correction function block diagram revised Command listed revised to reflect current camera operation 	19 April 2017
02	 Revised dynamic range values, including color specifications. PRNU value revised from 2.8 to 3.5. Updated spectral responsivity and QE graphs. 	2 March 2018
03	Revised QE and Responsivity graphs	3 May 2018
04	General update	August 21, 2020
05	 Pixel replacement mode for row column replacement renamed to row/col replacement mode. 	Nov 20, 2020

Contact Information

Sales Information

Visit	our	web	site:

Email:

www.teledynedalsa.com/mv mailto:info@teledynedalsa.com

Canadian Sales

Teledyne DALSA — Head office 605 McMurray Road Waterloo, Ontario, Canada, N2V 2E9 Tel: 519 886 6000 Fax: 519 886 8023 Teledyne DALSA — Montreal office 880 Rue McCaffrey Saint-Laurent, Quebec, Canada, H4T 2C7 Tel: (514) 333-1301 Fax: (514) 333-1388

USA Sales

Teledyne DALSA — Billerica office 700 Technology Park Drive Billerica, Ma. 01821 Tel: (978) 670-2000 Fax: (978) 670-2010 sales.americas@teledynedalsa.com

Asian Sales

Teledyne DALSA Asia Pacific Ikebukuro East 13F 3-4-3 Higashi Ikebukuro, Toshima-ku, Tokyo, Japan Tel: +81 3 5960 6353 Fax: +81 3 5960 6354 sales.asia@teledynedalsa.com

European Sales

Teledyne DALSA GMBH Lise-Meitner-Str. 7 82152 Krailling (Munich), Germany Tel: +49 – 89 89545730

sales.europe@teledynedalsa.com

Shanghai Industrial Investment Building Room G, 20F, 18 North Cao Xi Road, Shanghai, China 200030 Tel: +86-21-64279081 Fax: +86-21-64699430

Technical Support

Submit any support question or request via our web site:

