What is the difference between an Area Scan and a Line Scan Camera?

Examples of area scan and line scan applications

While the differences between the applications for an area scan machine vision camera vs. a line scan camera may often appear to be subtle, the differences in their technologies and the ways to optimize them in specific use cases is clear. By optimizing we include relative costs as well as imaging outcomes.  This brief overview provides a foundational overview. For additional application engineering assistance please contact one of our industrial imaging technical consultants and get the support you need.

Definition of an Area Scan Camera:

Area scan cameras are generally considered to be the all-purpose imaging solution as they use a straight-forward matrix of pixels to capture an image of an object, event, or scene. In comparison to line scan cameras, they offer easier setup and alignment. For stationary or slow moving objects, suitable lighting together with a moderate shutter speed can produce excellent images.

Even moving objects can become “stationary” from the perspective of an area scan camera through appropriate strobe lighting and/or a fast shutter speed, so just because something is motion does not necessarily disqualify an area scan solution.

Among the key features of an area scan camera include that the camera, when matched with a suitable lens, provide a fixed resolution. This allows for easy set up in imaging system applications where the cameras will not move after installation. Area scan cameras are also extremely flexible, as a single frame can be segmented into multiple regions-of-interest (ROI) to look for specific objects rather than having to process the entire image.

Additionally, some models of area scan cameras are optimized to be sensitive to infrared light, in portions of the spectrum not visible to the human eye. This allow for thermal imaging as well as feature identification applications that can be innovative and cost-effective, opening new opportunities for machine vision.

NIR imaging detects flaws in photovoltaic modules

Definition of a Line Scan Camera:

In contrast to an area scan camera, in a line scan camera a single row of pixels is used to capture data very quickly. As the object moves past the camera, the complete image is pieced together in the software line-by-line and pixel-by-pixel.

Line scan camera systems are the recognized standard for high-speed processing of fast-moving “continuous”objects such as in web inspection of paper, plastic film, and related applications.. Among the key factors impacting their adoption in these systems is that the single row of pixels produced by line scanning allows the imaging processing system to build continuous images unlimited by a specific vertical resolution. This results in superior, high resolution images. Unlike area scan cameras, a line scan camera can also expose a new image while the previous image is still transferring its data. (Because the pixel readout is faster than the camera exposure.) When building a composite image, the line scan camera can either move over an object or have moving objects presented to it. Coordination of production/camera motion and image acquisition timing are critical for line scan cameras but, unlike area scan cameras, lighting is relatively simple.

What if you need to image a medical tube, or round object, such as a steel ball bearing?

In certain applications, line scan cameras have other specific advantages over area scan cameras. Consider this application scenario: You need to inspect several round or cylindrical parts and your typical system experience is with area scan cameras, so you set about to use multiple cameras to cover the entire part surface. It’s doable, but a better solution would be to rotate the part in front of a single line scan camera to capture the entire surface and allow the processor to “unwrap” the image pixel-by-pixel. Line scan cameras are also typically smaller than area scan. As a result, they sneak into tight spaces such as in a spot where they might have to peek through rollers on a conveyor to view a key angle of a part for quality assurance.

Not sure which area scan or line scan camera is right for you?

There are a host of options and tradeoffs to consider even after you’ve made your decision on the technology that’s likely best for you. 1st Vision is the US distributor you need. Our industrial imaging consultants are available to help you navigate the various camera models and brands from industry-leading manufacturers Teledyne DALSA, IDS, and Allied Vision.

Contact us to learn more.

1stVision has cameras in stock!

IDS, Allied Vision, and DALSA cameras

Are you having problems with your machine vision camera deliveries?  Due to component shortages in the global marketplace, many camera manufacturers’ lead times are 3 to 6 months and some pushing more than 9 months.

We have good news.  As a stocking distributor, 1stVision has over 300 cameras in stock!

IDS Imaging, Allied Vision, and Teledyne DALSA cameras
Lights and lenses for machine vision

We may be a distributor, but our technical knowledge is second to none with our sales engineers having an average of 25 years of experience in the industry.  We can solve your problems and make recommendations. We’re the stocking distributor that’s big enough to stock the best cameras, and small enough to care about every image.

We’re also committed to customer education – we maintain online resources such as a Knowledge Base and a Machine Vision Blog, regularly updated to keep you informed of new technologies and product releases.  Machine vision and optics are evolving fields, with new technologies constantly emerging – it pays to stay informed.

Contact us at 1stVision to speak with us about cameras in stock now.

New AVT Alvium 1800 VSWIR cameras

Visible to SWIR sensors that cover both the visible and short wave infrared spectrum, are now available, affordable, and well-suited for a range of imaging applications.  Previously one might have needed two different sensors – and cameras – but Allied Vision’s Alvium 1800 U/C-030 and Alvium 1800 U/C-130 take advantage of Sony’s innovative InGaAs SenSWIR sensor technology to provide coverage across the visible to SWIR spectrum with the Sony IMX991.

Alvium VSWIR with MIPI CSI-2 and USB3 Vision interfaces

These Alvium 1800 VSWIR cameras can be used from 400 nm to 1700 nm, and are the smallest industrial-grade, uncooled SWIR core modules on the market.  With their compact design, low power consumption, and light weight, they are the ideal solution for compact OEM systems used in embedded and machine vision applications. 

The 030 models use a ¼”sensor with framerates to 223 fps, while the 130 models use a ½” sensor with framerates to 119 fps.  Both are available with USB3 Vision or MIPI CSI-2 interfaces, in housed, open, or board-level configurations. 

Contact us at 1stVision with a brief idea of your application, and we will contact you to discuss camera options. support and / or pricing.

Contact us

1st Vision’s sales engineers have an average of 20 years experience to assist in your camera selection.  Representing the largest portfolio of industry leading brands in imaging components, we can help you design the optimal vision solution for your application.

About Us | 1stVision

1st Vision is the most experienced distributor in the U.S. of machine vision cameras, lenses, frame grabbers, cables, lighting, and software in the industry.

How machine vision filters create contrast in machine vision applications

Before and after applying filters

Imaging outcomes depend crucially on contrast. It is only by making a feature “pop” relative to the larger image field in which the feature lies, that the feature can be optimally identified by machine vision software.

While sensor choice, lensing, and lighting are important aspects in building machine vision solutions with effective contrast creation, effective selection and application of filters can provide additional leverage for many applications. Often overlooked or misunderstood, here we provide a first-look at machine vision filter concepts and benefits.

Before and after applying filters

In the 4 image pairs above, each left-half image was generated with the same sensor, lighting, and exposure duration as the corresponding right-half images. But the right-half images have had filters applied to reduce glare or scratch-induced scatter, separate or block certain wavelengths, for example. If your brain finds the left-half images to be difficult to discern, image processing software wouldn’t be “happy” with the left-half either!

While there are also filtering benefits in color and SWIR imaging, it is worth noting that we started above with examples shown in monochrome. Surprising to many, it can often be both more effective and less expensive to create machine vision solutions in the monochrome space – often with filters – than in color. This may seem counter-intuitive, since most humans enjoy color vision, and use if effectively when driving, judging produce quality, choosing clothing that matches our skin tone, etc. But compared to using single-sensor color cameras, monochrome single sensor cameras paired with appropriate filters:

  • can offer higher contrast and better resolution
  • provide better signal-to-noise ratio
  • can be narrowed to sensitivity in near-ultraviolet, visible and near-infrared spectrums

These features give monochrome cameras a significant advantage when it comes to optical character recognition and verification, barcode reading, scratch or crack detection, wavelength separation and more. Depending on your application, monochrome cameras can be three times more efficient than color cameras.

Identify red vs. blue items

Color cameras may be the first thought when separating items by color, but it can be more efficient and effective to use a monochrome camera with a color bandpass filter. As shown above, to brighten or highlight an item that is predominantly red, using a red filter to transmit only the red portion of the spectrum can be used, blocking the rest of the transmitted light. The reverse can also work, using a blue filter to pass blue wavelengths while blocking red and other wavelengths.

Here we have touched on just a few examples, to whet the appetite. We anticipate developing a Tech Brief with a more in depth treatment of filters and their applications. We partner with Midwest Optical to offer you a wide range of filters for diverse application solutions.

Contact us

1st Vision’s sales engineers have an average of 20 years experience to assist in your camera selection.  Representing the largest portfolio of industry leading brands in imaging components, we can help you design the optimal vision solution for your application.

About Us | 1stVision

1st Vision is the most experienced distributor in the U.S. of machine vision cameras, lenses, frame grabbers, cables, lighting, and software in the industry.