Test your parts in 3D lab

Have you wondered if 3D laser profiling would work for your application? Unless you have experience in 3D imaging, for which laser profiling is one of several popular methods, you may be uncertain of the fit for your application. Yes, one can read a comprehensive Tech Briefs on 3D methods, or product specifications, but wouldn’t it be helpful to see some images of your parts taken with an actual 3D Laser Profiler?

Image courtesy Teledyne DALSA.

While prototyping at your facility is of course one option, if your target objects can be shipped, Teledyne DALSA has a Z-Trak Application Lab, whose services we may be able to arrange at no cost to you. Just describe your application requirements to us, and if 3D laser profiling sounds promising, the service works as follows:

  1. Send in representative samples (e.g. good part, bad part)
  2. We’ll configure Z-Trak Application Lab relative to sample size, shape, and applications goals, and run the samples to obtain images and data
  3. We’ll send you data, images, and reports
  4. Together we’ll interpret the results and you can decide if laser profiling is something you want to pursue

Really, just send samples in? Anything goes? Well not anything. It can’t be 50 meters long. Maybe a 15 centimeter subset would be good enough for proof of concept? And if the sample is a foodstuff, it can’t suffer overnight spoilage before it arrives.

A phone conversation that discusses the objects to be inspected, their dimensions, and the applications goal(s) is all we need to qualify accepting your samples for a test. Image courtesy of Teledyne DALSA.


Case study

In this segment, we feature outtakes from a recent use of the Z-Trak Application Lab, for a customer who needs to do weld seam inspections. The objective is to image a metal part with two weld seams using a Z-Trak 3D Laser Profiler and produce 3D images for evaluation of application feasibility. The images and texts shown here are taken from an actual report prepared for a prospective customer, to give you an understanding of the service.

Equipment:

  • Z-Trak LP1-1040-B2
  • Movable X,Y stage
    X-Resolution: ~25 um
    Y-Resolution: 40 um
    WD: ~50 mm

Image courtesy Teledyne DALSA

Conditions:
The metal part was laid flat on the X,Y stage under the Z-Trak. The stage was moved
to scan the part.

To the right, see the image generated from a perpendicular scan of the metal part. Image courtesy Teledyne DALSA.

The composite image below requires some explanation. The graphs on the middle column, from top to bottom, show Left-Weld-Length, Right-Weld-Length, and Weld-Midpoint-Width (between the left and right welds), respectively. The green markup arrows help you correlate the measurements to the image on the left. The rightmost column includes summary measurements such as Min, Max, and Mean values.

Image courtesy Teledyne DALSA

Now have a look at a similar screenshot, for Sample #2, which includes a “bad weld”:

Image courtesy Teledyne DALSA

With reference to the image above, the customer report included the following passage:

The top-right image is the left weld seam profile. In the Reporter window the measurement of this seam is 1694.79 mm long. However, a defect can be noted at the bottom of the left weld. In addition to the defect it can be seen from the profile that the weld is not straight in the Z-direction. The weld is closer to the surface at the top and further from the surface at the bottom

Translation: The automated inspection reveals the defective weld! Naturally one would have to dig in further regarding definitions of “good weld”, “bad weld”, tolerances, where to set thresholds to balance yields and quality standards vs. too many false positives, etc.

Conclusion

The report provided to the customer concluded that “This application is feasible using a Z-Trak 3D Laser Profiler.” While it’s likely that outcome will be achieved if we qualify your samples and application to use the Z-Trak Application Lab service, it’s not a foregone conclusion. We at 1stVision and our partner Teledyne DALSA are in the business of helping customers succeed, so we’re not going to raise false hopes of application success.

Recap

To summarize, the segments above are representative outtakes from an actual report prepared by the Z-Trak Application Lab. The full report contains more images, data, and analysis. Our goal here is to give you a taste for the complimentary service, to help you consider whether it might be helpful for your own application planning process.

Next steps?

To learn more, see a recent blog “Which Z-Trak 3D camera is best for my application?“. Or have a look at the Z-Trak product overview.

If you’d like to send in your parts, please use this “Contact Us” link or the one below. In the ‘Tell us about your project’ field, just write something like “I’d like to have parts sent to the Z-trak lab.” If you want to write additional details, that’s cool – but not required. We’ll call to discuss details at your convenience.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

3D Scanning Applications with AT Automation Technology

Previously we’ve introduced AT Automation Technology 3D scanners, which use triangulation – together with precision optics and embedded algorithms – to build a point cloud representation of 3D objects.

AT Automation Technology 3D scanner
– courtesy of Automation Technology

While there are interesting scanning applications in diverse industries, including automotive, food processing, battery production, display inspection, and more, in this piece we focus on the automotive industry. Below we offer a collection of short videos that help to tell the story. Each application utilizes AT Automation Technology 3D laser profilers.

CONTACT US to discuss your application! We have longstanding returning customers who know we like to help you choose the right cameras and components. It’s what we do.

Inspection of brake discs, for surface defects, duration 1 minute 24 seconds:


Inspection of stamped metal parts, duration 37 seconds:


Inspecting asymmetrical objects, duration 50 seconds:


You don’t have to be in the automotive industry to take advantage of AT Automation Technology 3D laser scanning! Food processing, display inspection, battery production – indeed all sorts of 3D applications are enabled or enhanced by laser triangulation approaches to building 3D point clouds for a scanned object, and comparing the scan to the idealized perfect object. The difference calculation determines if the test object is within the defined tolerances.

3D point cloud
From real space to 3D point cloud model – Image courtesy of AT Automation Technology

We have videos for other industries and applications available, and sales engineers who can help guide you to a solution for your particular needs. Call us at 978-474-0044.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

AT – Automation Technology 3D Profilers – What makes them different? 

3D laser profiling is widely used in diverse industries and applications.  There are a number of mature offerings and periodic next generation innovations.  So what would it take to convince you to take a look at the value proposition for AT – Automation Technology’s C6 Series?  In particular the C6-3070, the fastest laser triangulation laser profiler on the market.

AT says that  “C6 Series is an Evolution.  C6-3070 is a Revolution”.   Let’s briefly review the principles of laser profile scanning, followed by what makes this particular product so compelling.

3D profile scanning components – courtesy Automation Technology

What are the distinguishing characteristics of each item labeled in the above diagram?

  • Target object: An item whose height variations we want to digitally map or profile
  • XYZ guide: The laser line paints the X dimension; each slice is in the Y dimension; height correlates to Z
  • Laser line projector: paints the X dimension across the target object
  • Objective lens: focuses reflected laser light
  • CMOS detector: array of pixel wells, or pixels, such that for each cycle, the electronic value of a pixel scales with the height value of the geometrically corresponding position on the target object
  • FPGA and I/O circuitry: provide the timing, the smarts, and the communications

The key to laser triangulation is that the triangulation angle varies in direct correlation with the height variances on the target object that reflects the projected laser light through the lens and onto the detector. It’s “just geometry” – though packaged of course efficiently into the embedded algorithms and precisely aligned optics.

The goal in 3D profile scanning is to build a 3D point cloud representing the height profile of the target object.

Laser line reflections captured to create 3D point cloud of target object – courtesy Automated Technology

Speed and Resolution: 200kHz @ 3k resolution. That’s the fastest on the market. This is due to AT’s proprietary sensor WARP – Widely Advanced Rapid Profiling. How does it work?

The C6-3070 imager has on-board pre-processing. In particular, it detects the laser line on the imager, so that only the part of the image around the laser line is transferred to the FPGA for further processing. This massively reduces the volume of data needing to be transferred, but focusing on just the relevant immediate neighborhood around the laser line. Which means more cycles per second. Which is how 200kHz at 3k resolution is attained.

C6-3070 imager’s pre-processing sends just the portion of the image needed, thereby achieving higher framerates – courtesy Automation Technology

Modularity: When Henry Ford introduced the Model T, he is famously attributed to have said “You can have it any color you like, as long as it’s black.” Ford achieved economies of scale with a standardized product, and almost all manufacturers follow principles of standardization for the same reason.

But AT – Automation Technology’s C6 Series is modular by design – each component of an overall system offers standard options. There are no minimum order quantities, no special engineering charges, and lead times are short because the modular components are pre-stocked.

For example:

  • Laser options (blue, red laser class: 2M, 3R, 3B)
  • X-FOV (Field Of View) from 7mm to 1290 mm
  • Single or dual head sensors
  • Sensor parameters offer customizable Working Distance, Triangulation Angle, and Speed

Software: The cameras may be controlled by many popular third party software products, as the are GigE-Vision / Genicam 3.0 compliant. Or you may download the comprehensive and free AT Solution Package, optimized for use with AT’s IR cameras. The SDK is C-based API with wrappers for C++, C# and Python.

Besides the SDK itself, users may want to take advantage of the Metrology Package. The Metrology Package provides a toolset for evaluating measurement results.

Pricing: You might think that a product asserted to be the fastest on the market would come at a premium price. In fact AT’s 3D profilers are priced so competitively that they are often price leaders as well. At the time of writing, they certainly lead on (price : performance) in their class. Call us at 978-474-0044.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

Which Z-Trak 3D camera is best for my application?

So you want to do an in-line measurement, inspection, identification and/or guidance application in automotive, electronics, semiconductor or factory automation. Whether a new application or time for an upgrade, you know that Teledyne DALSA’s Z-Trak 3D Laser Profiler balances high performance while also offering a low total cost of ownership.

In this 2nd Edition release we update the Z-Trak family overview with the addition of the new LP2C 4k series, bringing even more options along the price : performance spectrum. From low cost and good enough, through more resolution as well as fast, and all the way to highest resolution, there are a range of Z-Trak profiles to choose from.

Z-Trak 3D Laser Profiler

The first generation Z-Trak product, the LP1, is the cornerstone of the expanded Z-Trak family, now augmented with the Z-Trak2 group (V-series and the S-series), plus the LP2C 4k series. Each product brings specific value propositions – here we aim to help you navigate among the options.

Respecting the reader’s time, key distinctions among the series are:

  • LP1 is the most economical 3D profiler on the market – contact us for pricing.
  • Z-Trak2 is one of the fastest 3D profilers on the market – with speeds to 45kHz.
  • LP2C 4k provides 4,096 profiles per second at resolution down to 3.5 microns.

To guide you effectively to the product best-suited for your application, we’ve prepared the following table, and encourage you to fill in the blanks, either on a printout of the page or via copy-past into a spreadsheet (for your own planning or to share with us as co-planners).

3D application key attributes

Compare your application’s key attributes from above with some of the feature capacities of the three Z-Trak product families below, as a first-pass at determining fit:

Z-Trak Series' overvivew

Unless the fit is obvious – and often it is not – we invite you to send us your application requirements. We we love mapping customer requirements, so please send us your application details in our form on this contact link; or you can send us an email to info@1stvision.com with the feedback from your 3D application’s “Key questions” above.

In addition to the parameter-based approach to choosing the ideal Z-Trak model, we also offer an empirical approach – send in your samples. We have a lab set up to inspect customer samples with two or more candidate configurations. System outputs can then be examined for efficacy relative to your performance requirements, to determine how much is enough – without over-engineering.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

Note: This is the 2nd edition of a blog originally published December 16, 2022, now augmented with the Z-Trak LP2C 4k series.