Fujinon introduces new HF-XA 5/3 Megapixel lens line

Fujinon’s new HF-XA lenses are optically 5MP in the center, 3 MP at the edges, but are priced at the same or less than competitors 2-3MP lenses.

Other 2-3MP lenses are rated only for their centers, in turn, as you get off axis the quality diminishes.  

Fuji’s lenses are 3MP at the edges and even higher at the center!











Features of the new Fujinon HF-XA Series include

  • Support up to 5 Megapixels in lens center, 3 Megapixel at edge. 
  • 2/3″ sensor format
  • Maintains edge to edge sharpness that fully resolves pixel pitches down to 4.4um
  • Compact and lightweight body with a diameter of 29.5mm.  Fits nicely with common 29mm cube cameras!
  • Designed for installation convenience – Three screw holes are provided on the iris and focus rings for affixing the lens in place.  When screwing down the lenses iris and focus rings in tight spaces, you can choose from those positions for greater installation convenience.  
Fujinon HF-XA main specifications as follows  –  Full data sheets can be found HERE







































Need help?   We’re here for you!

1st Vision has many resources to help you in selecting a lenses and cameras..or you can just contact us!   Here’s a few resources that can help you:

  • Blog – Our Blog posts continue to have new information and tutorials on lenses.  See the specific lens posts HERE.




1st Vision has extensive knowledge in industrial imaging and can help answer any 
questions.  We have over 100 years of combined knowledge and look forward to discussing your application.  

Please do not hesitate to Contact us!  1st Vision can provide a complete solution including cameras, lenses, lighting and cables.  

Ph:  978-474-0044
info@1stvision.com
www.1stvision.com  

Follow us on Social Media!

     https://www.facebook.com/pages/1st-Vision/944658058935262?fref=ts             

OEM lenses providing best in class at lower costs

1st Vision‘s factory automation OEM machine vision lenses are designed using glass from one of the top Japanese lens manufacturers. These lenses are not branded and allow our clients to have excellent performance at a better price than the ‘named’ brand manufacturers since there are no marketing costs!


In their class, they offer the most bang for the buck! 






In comparing specifications, our OEM lenses have better resolution in many cases over brand name lenses, but at ~ 30% less cost! in some cases.   If used in an OEM design, a non branded lens will ensure customers are coming to you for replacements and ensure the same performance.  

Details specifications can be found HERE.

As we know selecting a lens can have its challenges, our staff of degree’d sales engineers are here to help!  We can help pair the best lens with the given camera and image sensor to maximize performance.  


Best of all.. 1st Vision has these in stock!  


All our our OEM lenses can be purchased on-line HERE

We also have several blog posts providing additional education on lens selection including handy focal length calculators.  

Resources:  

1st Vision has extensive knowledge in industrial imaging and can help answer any questions.  We have over 100 years of combined knowledge and look forward to discussing your application.  

Please do not hesitate to Contact us!  1st Vision can provide a complete solution including cameras, lenses, lighting and cables.  

Ph:  978-474-0044
info@1stvision.com
www.1stvision.com  

Follow us on Social Media!

     https://www.facebook.com/pages/1st-Vision/944658058935262?fref=ts             

Macro Lens Vs Extension Tubes – What provides the best results?

Macro lenses solve the problem of imaging a small field of view from a relatively large distance away (relative to the size of the field of view). This solution normally consists of a large focal length lens, however these lenses have Minimum Object distance (MOD) and focus further away than desired.

For example: Using a 1/3” sensor, you want to look at a 3mm Field Of View (FOV) from 30mm away. The solution requires a 50mm lens, but 50mm lenses do not focus closer than 500mm away in some cases!
A solution is to add “extension tubes” in between the camera and the lens, but this leads to several problems like high image distortion, resolution loss (especially at the corners), poor depth of field and chromatic effects.  This makes this method not suitable for good imaging especially if accurate measurements are required.  



What’s the solution?
 
Opto Engineering Macro lenses!  These lenses are specifically designed for macro imaging allowing close up focusing and small field of views.  Unlike conventional lenses, these lenses are optimized to overcome image distortion, poor depth of field and chromatic effects.  A very low optical distortion makes these lenses perfectly suitable for precise dimensional measurement applications.  





As seen on the images to the right, using a macro lens delivers superior image quality compared to standard fixed focal length camera lenses using extension tubes.  











Incredibly low distortion is also provided by these macro lenses compared to standard fixed focal lenses with extension tubes.  These lenses will provide the same performance at the center and edges of the field of view.

This is crucial in flat measurement applications. 

Using conventional lenses, measurements will not be accurate and require calibration.  





Color consistency is provided by these macro lenses for demanding applications and corrected over the visible spectrum.  In turn, chromatic aberrations are not exhibited when compared to conventional lenses.  







Opto Engineering provides four series of lenses that cover 1/3″ to 2/3″ format area sensors and up to 63mm line scan sensors – Series as follows: 

  • MC Zero distortion macro lens (0.33  – 3X mag)
  • MC3-03X – Zero distortion, multi-configuration macro lens (0.1 – 3X mag)
  • MC4K  – Macro lenses for 4k linescan cameras (0.3 – 2X mag)  
  • MC12K – Macro lenses for 12k and 16k linescan cameras (0.07 – 2X mag)

Full Specifications can be found HERE.  

This short video provides a brief overview of the Opto Engineering Macro series lenses

1st Vision has extensive knowledge in industrial imaging and can help answer any questions.  We have over 100 years of combined knowledge and look forward to discussing your application.  

Please do not hesitate to Contact us for a quote. 1st Vision can provide a complete solution including cameras, lenses, lighting and cables.  


Ph:  978-474-0044
info@1stvision.com
www.1stvision.com  

 
Follow us on Social Media!
     https://www.facebook.com/pages/1st-Vision/944658058935262?fref=ts             

Imaging Basics – Calculating Lens Focal length

In any industrial imaging application, we have the task of selecting several main components to solve the problem at hand.  The first being an industrial camera and second,  a lens to acquire the given image.  In many cases, our working distance of our lens is constrained and may have to mount the camera closer or further from the object plane.  Once set, this defines our working distance (WD) for the lens.  In addition, we have a given field of view (basically the dimension across the image) of the desired object.  


In order to select the correct focal length lens which is denoted in millimeters (i.e 25mm focal length), we need additional information on the camera sensor.  Camera sensors come in various “Image formats”.  The chart below indicates some common formats which relate to the sensor size.  The sensor size can be found on the actual sensor datasheets if not available in a given chart.  


For this exercise, we want to image an object that is 400mm from the front of the lens to the object and desire a field of view of 90mm.  

We have selected a camera with the Sony Pregius CMOS IMX174 sensor.  This uses a 1/1.2″ format which measures 10.67mm x 8mm.  


We have the following known values at this point: 

Field of View (FOV)  =  90mm
Working Distance (WD) = 400mm   
Sensor Size = 10.67mm – We will calculate for a 90mm horizonal FOV, in turn use the horizontal sensor dimension

The basic formula on how to calculate the lens focal length is as follows:

FL = (Sensor size * WD) / FOV

Using the values from our application, 

FL = ( 10.67mm * 400mm ) / 90mm 
FL = 47.4mm

Lenses are only available off the shelf in various focal lengths (i.e 25mm, 35mm, 50mm), so this calculate is theoretical and may need an iteration to adjust working distance. Alternatively, if your application can have a slightly smaller or larger FOV, the closest focal length lens to your calculation may be suitable.


1st Vision has made calculating your lens focal length a bit easier!  As in engineering, its good to know the background formulas, but in practicality, like to simplify life with tools

You will find our lens calculator HERE.  Alternatively as select a camera, you will find an icon to the right which will automatically populate the calculator.  Below is a short video showing how to use this resource from the camera pages.  





A few additional considerations when selecting a lens:

  • Lenses have minimum working distances (MOD), so this should be considered when reviewing a lens setup.  MOD’s can be found on the lens page for the given lenses.
  • Lenses need to be paired with the appropriate sensor.  For example, if you have a 1/2″ sensor, you need to ensure you are using a 1/2″ format lens or larger.
  • In selecting a lens, you need to ensure the lens has enough resolution (in lp/mm) to resolve the pixels on your camera.  Be sure to review this data carefully once you ID the desired focal length.  Demystifying lens specifications provides further understanding. 


Related Blogs: 
Demystifying Lens Specifications
Understanding Lens MTF
Calculating Resolution for Machine vision


Contact us to discuss your application and help make a recommendation!  1st Vision can provide a complete solution including lenses, cables and lighting. 

www.1stvision.com  
Ph:  978-474-0044

Do not forget to follow us on social media!
     https://www.facebook.com/pages/1st-Vision/944658058935262?fref=ts