New Falcon4-M2240 – 2.8Mpix at up to 1200fps!

Teledyne DALSA Falcon4

Who needs another 2.8Mpix camera? In this case it’s not about the pixel count per se, but about the frame rates and the dynamic range.

Falcon™4-CLHS – courtesy Teledyne DALSA

With more common interfaces like GigE and 5GigE we expect frame rates from a 2.8 Mpix camera in the range 20 – 120fps, respectively. But with the Camera Link High Speed (CLHS) interface, Teledyne DALSA’s new Falcon4-M2240 camera can deliver up to 1200fps. If your application demands high-speed performance together with 2.8Mpix resolution, this camera delivers.

Besides speed, an even more remarkable feature of the Falcon4-M2240, based on the Teledyne e2v Lince 2.8 MP, is a pixel well depth, or full well capacity, of ~138 [ke-]. THAT VALUE IS NOT A TYPO!! It really is ~138 [ke-]. Other sensors also thought of as high quality offer pixel well depths only 1/10th of this value, so this sensor is a game changer.

Contact us for a quote

Why does pixel well depth matter? Recall the analogy of photons to raindrops, and pixel wells to buckets. With no raindrops, the bucket is empty, just as with no photons quantized to electrons, the pixel well is empty and the monochrome pixel would correspond to 0 or full-black. When the bucket, or pixel well, becomes exactly full with the last raindrop (electron) it can hold, it’s reached it’s full well capacity – the pixel value would be fully saturated at white (for a monochrome sensor).

The expressive capacity of each pixel admits the widest range of values in correlation to the full well capacity before charge overflows, so the camera is calibrated by the designer according to the sensor’s capabilities. Sensors with higher full well capacity are desirable, since they can capture all the nuances of the imaging target, which in turn gives your software maximum image features to identify.

Falcon4 cameras offer highest performance – courtesy Teledyne DALSA

This newest member of the Falcon4 family joins siblings with sensors offering 11, 37, and 67 Mpix respectively. The Falcon4 family represents continues the success of the Falcon2 family, all of which share many common features: These include:

  • CMOS global shutter
  • High dynamic range
  • 1000x anti-blooming
  • M42 to M95 optics mount
  • Camera Link or Camera Link HS interface
Falcon family members share many features

Even before the new firmware update (V1.02), Falcon4 cameras already offered:

  • Multiple triggering options
  • Multiple exposure control options
  • In sensor binning
  • Gain control
  • In camera Look-up-table (LUT)
  • Pixel correction
  • … and more

Now with Firmware 1.02 the Falcon4 family gets these additional features:

  • Multi-ROI
  • ROI position change by sequencer cycling
  • Digital gain change by sequencer cycling sequencer cycling of Digital Gain
  • Exposure change by sequencer cycling
  • Sequencer cycling of output pulse
  • Meta Data

Multi-ROI

Higher FPS by sending only ROIs needed – courtesy Teledyne DALSA

Region Of Interest (ROI) capabilities are compelling when an application has defined regions within a larger field that can be read out, skipping the un-necessary regions, thereby achieving much higher framerates than having to transfer the full resolution image from camera to host. It’s like having a number of smaller-sensor cameras, each pointed at their own region, but without the complexity of having to manage multiple cameras. As shown in the image below, the composite image frame rates are equivalent to the single ROI speed gains one might have known on other cameras.


Sequencer cycling of ROI position:

Each trigger changes ROI position – courtesy Teledyne DALSA

Cycling the ROI position for successive images might not seem to have obvious benefits – but what if the host computer could process image 1, while the camera acquires and begins transmitting image 2, and so forth? Overall throughput for the system rises – efficiency gains!


Sequencer cycling of output pulse:

Courtesy Teledyne DALSA

For certain applications, it can be essential to take 2 or more exposures of the same field of view, each under different lighting conditions. Under natural light, one might take a short, medium, and long exposure duration, to hedge on which is best, let the camera or object move to the next position, and let the software decide which is best. Or under controlled lighting, one might image once with white or colored light, then again with an NIR wavelength, knowing that each exposure condition reveals different features relevant to the application.


Metadata:

Metadata structure – courtesy Teledyne DALSA

Metadata may not sound very exciting, and the visuals aren’t that compelling. But sending data along for the ride with each image may be critical for quality control archiving, application analysis and optimization, scheduled maintenance planning, or other reasons of your own choosing. For example, it may be valuable to know at what shutter or gain setting an image was acquired; or to have a timestamp; or to know the device ID from which camera the image came.


The Falcon2 and Falcon4 cameras are designed for use in industrial inspection, robotics, medical, scientific imaging, as well as wide variety of other demanding automated imaging and machine vision applications requiring ultra-high-resolution images.

Representative application fields:

Applications for 67MP Genie Nano – courtesy Teledyne DALSA

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

New IDS XLS cameras – tiny cameras – low-price category

IDS XLS board level cameras

The smallest board-level cameras in the IDS portfolio, the uEye XLS cameras have very low power consumption and heat generation. They are ideal for embedded applications and device engineering. Sensors are available for monochrome, color, and NIR.

XLS board-level with no lens mount; with S-mount; with C-mount – courtesy of IDS

The “S” in the name means “small”, as the series is a compact version of the uEye XLE series. As small as 29 x 29 x 7 mm in size! Each USB3 camera in the series is Vision Standard compliant, has a Micro-B connector, and offers a choice of either C/CS lens mount, S-mount, or no-mount DIY.

IDS uEye XLS camera familycourtesy of IDS

Positioned in the low-price portfolio, the XLS cameras are most likely to be adopted by customers requiring high volumes for which basic – but still impressive – functions are sufficient. The XLS launch family of sensors include ON Semi AR0234, ON Semi AR0521, ON Semi AR0522, Sony IMX415, and Sony IMX412. These span a wide range of resolutions, framerates, and frequency responses. Each sensor appears in 3 board-level variants per the last digit in each part number corresponding as follows: 1 = S-mount, 2 = no-mount, 4 = C, CS-mount.

SensorResolutionFramerateMonochromeColorNIR
ON Semi AR02341920
x
1200
102 fpsU3-356(1/2/4)
XLS-M
U3-356(1/2/4)
XLS-C
ON Semi AR05212592
x
1944
48 fpsU3-
368(1/2/4)
XLS-M
U3-
368(1/2/4)
XLS-C
ON Semi AR05222592
x
1944
48 fpsU3-368(1/2/4)
XLS-NIR
Sony
IMX415
3864
x
2176
25 fpsU3-38J(1/2/4)
XLS-M
U3-38J(1/2/4)
XLS-C
Sony
IMX412
4056
x
3040
18 fpsU3-38L(1/2/4)
XLS-C
XLS family spans 5 sensors covering a range of requirements
XLS dimensions, mounts, and connections – courtesy of IDS

Uses are wide-ranging, skewing towards high-volume embedded applications:

Example applications for XLS board-level cameras – courtesy of IDS

In a nutshell, these are cost-effective cameras with basic functions. The uEye XLS cameras are small, easy to integrate with IDS or industry-standard software, cost-optimized and equipped with the fundamental functions for high-quality image evaluation

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

Lucid Helios2+ Time of Flight 3D cameras

The Lucid Vision Labs Helios2+ Time of Flight (ToF) 3D camera features High Dynamic Range (HDR) mode, and High-Speed Time-of-Flight mode, and a Sony DepthSense™ IMX556PLR 1/2″ global shutter CMOS back-illuminated ToF sensor.

Lucid Helios2+ Time of Flight 3D cameras

Do I need a Time of Flight (ToF) 3D camera? It depends. If you can achieve the desired outcome in 2D, by all means stay in 2D since the geometry is simpler as are the camera, lensing, lighting, and software requirements. But as discussed in “Types of 3D imaging systems – and benefits of Time of Flight (TOF)”, some applications can only be solved, or innovative offerings created, by working in a three dimensional space.

Robots doing pick-and-place, aerial drones, and patient monitoring are three examples, just to name diverse applications, that may require 3D ToF imaging. Some 3D systems use structured light or passive stereo approaches to build a 3D representation of the object space – but those approaches are often constrained to short working distances. ToF can be ideal for applications operating at working distances of 0.5m – 5m and beyond, with depth resolution requirements to 1 – 5mm.

Lucid Vision Labs has been a recognized leader in 3D ToF systems some time, and we are proud to represent their Helios2 and new Helios2+ cameras, the latter with high speed modes achieve frame rates of 100fps+.

Besides the high speed mode in the video above, another feature is High Dynamic Range mode, combining multiple exposures to provide accurate 3D depth information for high contrast, complex objects containing both highly reflective and low reflectivity objects. Sensing and depth measurement applications to sub-mm (< 1mm) precision. Click here to see examples and further details.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

IDS uEye XC: Webcam alternative for industrial applications

While traditional webcams are notoriously easy to bring online, they are typically only consumer-grade in robustness, and the images they deliver haven’t been standards compliant – meaning machine vision software hasn’t been able to process the data.

Enter IDS uEye XC, a game changing USB3 auto-focus camera from the Vision Standard-compliant uEYE+ product line. With integrated auto-focus, images – both stills and videos – remain sharp even as working distance varies. Application possibilities include kiosk systems, logistics, and robotics.

With a lightweight magnesium housing, dimensions of just 32 x 61 x 19mm (W x H x D), the 13 MP OnSemi sensor delivers 20 fps. BSI (Backside lllumination) provides significant improvements in low light signal-to-noise ratio, visible light sensitivity and infrared performance.

The IDS uEye XC camera utilizes industrial-grade components and IDS provides a long planned lifecycle, so that customers can confidently do design-ins knowing they can source more cameras for many years to come. Additional features include 24x digital zoom, auto white balance and color correction.

Designed for plug-and-play installation, IDS’ peak SDK makes it easy to configure the camera for optimal performance in your application, in case you want to modify parameter settings.

Contact us at 1stVision with a brief idea of your application, and we will contact you to discuss camera options. support and / or pricing.

Contact us

1st Vision’s sales engineers have an average of 20 years experience to assist in your camera selection.  Representing the largest portfolio of industry leading brands in imaging components, we can help you design the optimal vision solution for your application.

About Us | 1stVision

1st Vision is the most experienced distributor in the U.S. of machine vision cameras, lenses, frame grabbers, cables, lighting, and software in the industry.