How to get greater resolution from your color sensor using a low cost 18 MP IDS camera

Bayer Patter - Mono
IDS UI-3590 camera
IDS UI-3590CP camera

The AR1820HS Image sensor 18 mega pixel sensor in the IDS Imaging IDS Imaging UI-3590 camera models was launched by the sensor manufacturer ON Semiconductor as a pure color sensor.  Like all color sensors, the Bayer filter means that you get color images with effectively only around a quarter of the nominal sensor resolution, as the color information for each pixel is obtained from four neighbors

To use each individual pixel, however, it is not sufficient to operate the sensor in RAW data format (without Bayer interpolation).  Operating in a raw format results in a different brightness perception of the individual pixels and NOT a usable image.

This technical tip will show you how to use the color sensor as a “pure” mono sensor by appropriate parameter settings and the use of suitable light sources, in order to obtain a significantly higher resolution.

Applications which require a color image and precision will benefit from this camera and method.. and all for less than $600 with the IDS UI-3590LE camera

Background

Bayer Pattern
Arrangement of colour filters in the Bayer matrix

The principle of digital image sensors such as the 18 MP ON Semiconductor AR1820HS means that they acquire only brightness, but not color information.

As a result, a color filter is applied to each pixel during manufacture of the color sensors.  This is known as the Bayer matrix.

Of each four pixels, two pixels are given a green color filter, one pixel a red filter and one pixel a blue color filter.  This color distribution corresponds to the perception of the human eye and is referred to as the Bayer matrix.

RGB Filter
The RGB filter layers only transmit light with
a particular wavelength

A pixel depicts only the information for one color.

To obtain the complete RGB values for each pixel, the missing primary colors are interpolated from four neighboring pixels using appropriate algorithms. This color interpolation assumes that there are only slight color differences between two adjacent pixels of the same color.  Strictly speaking, a sensor with Bayer matrix therefore has only a quarter of the native sensor resolution

Sensor mono mode

Although the Bayer matrix cannot simply be rendered invisible for mono mode, the following two solutions show how you can achieve the desired result depending on the type of application.

1) For “grey scenes”  (i.e. dark pin on a white background)

If the 18 MP color sensor is to be used in mono mode for achromatic scenes, note that a broad band light source (white light) must still be used. This is because of the sensor’s Bayer matrix.  With this sensor, monochromatic (single color) light would have resulted in the individual pixels transmitting no or less information depending on the wavelength of the light, due to the RGB filter layers used (see Figure 2). This can result in a different brightness perception for the individual pixels. In this case, the RGB enhancement must be calibrated separately for R, G, and B. As a result, you then obtain an identical brightness perception for all pixels as with a mono sensor.

IDS Imaging
Without calibration of the RGB enhancement, the Bayer matrix is clearly visible (left).
After RGB calibration (see RGB histogram, right) there is a homo-geneous brightness perception as with a mono sensor

Note: This RGB calibration is only valid for this specific light source and a “grey” scene.  If the light source (wavelength) changes, the RGB enhancement factors have to be re-adjusted.

Contact 1stVision to obtain instructions on  switching the Bayer matrix to “invisible” using the uEye Cockpit:2) For “color or grey scenes”

If you work with color scenes in your application, the brightness sensitivity of the individual Bayer pixels constantly changes with the variation in color components. There is also a way to achieve genuine mono mode in this situation. The solution lies in the color spectrum of the 18 MP ON Semiconductor AR1820HS.

Above a wavelength of around 900 nm the color filters for the individual pixels have similar spectral properties. Beyond this threshold, all pixels on the sensor respond practically identically to incident light again – exactly as with a dedicated mono sensor. This means that the Bayer matrix can also be made invisible using this method, both for color and also for grey scenes

AR1820HS Spectrum
The colour spectrum of the AR1820HS shows similar spectral proper-ties of the colour filters above 900 nm

In order to be able to use this spectral property of the sensor as described, you must observe the following:

  • Ensure defined lighting conditions, i.e. seal off light with other wavelengths shorter than 900 nm as far as possible.
  • Order your uEye camera with AR1820HS sensor specifically with GL filter (glass). The HQ filter normally ordered with this sensor would block out the long-wave light.  By contrast, the GL filter allows light beyond 900 nm to pass with high transmission. The highest possible signal strength thus arrives at the sensor.

Full Information on the IDS Imaging UI-3590LE and UI-3590CP cameras can be found below

IDS-UI-3590LE – 18MP camera, LE version

IDS-UI-3590CP – 18MP camera, CP version

1stVision has over 100 years of industrial imaging experience!  Contact us to help select the best camera and lenses for your applications.

contact us

Dalsa line scan polarization camera makes invisible visible!

Teledyne Dalsa has released the first line scan polarization camera for machine vision.  The Piranha4 polarization camera provides the capability of detecting , stress, surface roughness,  birefringence and physical properties undetectable with conventional imaging making the invisible visible!

This unique technique uses four polarization channels with a color line scan camera solving various applications, but not limited to the following:

Glass Inspection:  Glass bottles, architectural glass sheets, and automobile windshields, etc. – Enables inspection of internal stress and defects non-visible with conventional imaging

Dalsa Polorized ruler

Film inspection: transparent films, packaging films, and patterned films etc. – Detect scratches, digs, and other surface defects that are difficult to detect with conventional imaging   Dalsa Polarized scratch

Precision optics: optical lens, prisms, fibers, and micro-optical – Detect residual internal stress and thermal annealing effects
polarized - stress in sun glasses

Flat Panel Display and PCB inspection: Thin film transistors, organic LEDs, printed circuit boards etc.- inspect ITO, dust particles, films thickness, and surface defects with enhanced contrast

Carbon fibers: effectively inspect the quality of composite materials that are widely used in aircraft, aerospace, wind energy, and automotive industry

Food and material sorting: Increase sorting accuracy and detecting capability of foreign materials such as plastics, glasses, metals etc. with polarization imaging

Bio-medicine: digital pathology, in vitro cells culture, optical coherence tomography etc.- Provides additional information in birefringence tissues
Remote sensing: helps identifying special objects from natural background
And many more…

Contact 1st vision

Line scan polarization camera Features

  • CMOS Quadlinear sensor  – 2048 pixels
  • High speed line rate of 70k hz with 14.08 um pixels
  • Camera Link interface
  • Three polarization states plus and unfiltered channel (Output format with 0 deg (S component), 90 deg (P component), 135 deg and unfiltered polarization states.)

Full specifications on the Teledyne Dalsa polarization camera ( P4-CP-02K07Q-00-R ) can be found HERE

line scan camera Polarization angles

White Paper  – Learn about this unique polarization technique with line scan cameras!   This white paper covers the following topics

  • How polarization techniques work in transmission and reflectance configuration
  • Comparison of three polarization filter technologies
  • How the sensor architecture is configured for polarization effects and visualization of defects.

line scan polarization camera white paper

1stVision has a strong working knowledge of polarization techniques, line scan cameras and lighting and can discuss your application in detail.

Contact us to talk to an expert!

Related Blog posts:
Teledyne Dalsa release of low cost GigE and camera link color line scan cameras

Video Tutorial:  How to setup HDR Imaging in Teledyne Dalsa Linea Line scan cameras

What is a lens optical format? Can I use any machine vision camera with any format? NOT!

Image lens format

Common lens questions we are often asked are, “What is a lens’s optical format (or size; we will use the two interchangeably) and how does it relate to specific image sensor sizes in industrial cameras?   Along with, “Can any size machine vision camera be used on any lens format or do they need to be matched exactly?”

First lets review the sizes of the machine vision camera image sensors themselves (as seen below).

Lens Optical format
Image sensor sizes given in ” vs. true diagonal size in mm

The image sensor size is typically put in terms of “inches”, but really has nothing to do with this and dates back to the “image tube” days.  Without a big history lesson, a sensor that fit into an image tube with a 1” (inch) yoke was deemed a  1” image format .  Today, we still use these terms and  see commons sizes stated as 1/3”, ½”, 2/3” as seen in the image above. Note: The image size in ” does  NOT calculate to mm and vice versa! It is nomenclature only.

 However, what is important is to look at the diagonal across the given image sensor which is the “image circle”.  (i.e The 1/3” format above has a diagonal of 6 mm.  )

The size of the lens MUST be equal or greater than the size of the sensor ( circle size that covers the sensor)  or you simply will not get the whole image!

Lens optical format vs sensor size
Lens optical format (circle) vs sensor size (rectangle)

The diagram above shows a 1/3″ format image sensor (6mm diagonal).  In order to adequately cover the image sensor, you need a 1/3″ lens format or larger.  On the left, we show a lens with a  1/4″ format, and it does not cover the sensor.

Optical Vignetting
Optical Vignetting

The end results from the improper mating of a smaller lens format than the image sensor format will be vignetting (dark corners where the lens does not cover the sensor) of the image.

What can I do when there is no specific lens format matching the image sensor format?

Lens manufacturers are continuing to design lenses to address the changing sensor market.  However you will not always find a specific size format to match the lens.  In these cases, you just need to ensure the lens format (image circle diameter) is larger than the sensor as mentioned in the above example.

An example is the newer 1/1.2” sensor sizes (IMX174, IMX249 ) which have a diagonal of 13.4mm.  Although there are some lens manufacturers that designed a lens with the specific 1/1.2” format, there are not many.  Referring to lens format diagram, the 1/1.2” format is between a 2/3” and 1” format.  The 2/3” format has a image circle of 11 mm which will not fully cover the 1/1.2” format (13.4mm diagonal), and you will get vignetting of the image. The solution is to use the next size up which is a 1” format.  This format is commonly found in many lens manufacturers, in turn providing many lens manufacturers to choose from.

Click here now for all lens sizes and manufacturers

In conclusion, you can use an image format on a lens on smaller image sensor size, but not the other way!.. You’ll have vignetting and lose part of your image!

What else do we need to consider in lens selection?

This blog post simply covers sensor formats vs sensor sizes. There is much more to consider in a lens selection such as resolution of the lens to resolve the pixels themselves, what focal length is needed etc.

Here are some further resources to help in the selection process.  Additionally, 1st Vision has over 100 years of combined experience in industrial imaging in which you can contact us to aid in the section.

How to choose a lens

Calculating resolution for a machine vision application – https://www.1stvision.com/machine-vision-solutions/2015/07/imaging-basics-calculating-resolution.html

Video Tutorial  – Using the  On-line lens focal length calculator https://www.youtube.com/watch?feature=player_embedded&v=baF4lwl0LwM

1st Vision newly added our high quality 1” format lenses which provide an excellent price vs performance ratio – Read more here.

Images courtesy of Wikipedia

Learn how liquid lenses keep continuous focus on machine vision cameras when the working distance changes.

Optotune focus tunable lenses
Optotune lenses
Optotune lenses

Optotune lenses solve a machine vision industry problem! 

IDS Imaging camera with Optotune lens

so
Machine Vision applications requiring the inspection of objects at various heights can become a challenge as normal lens have limited depth of field.  Objects outside of the depth of field become out of focus, limiting the vision application.  Historically, a lens with motorized focus adjustment would be implemented adding complexity, cost and long cycle times.  In reality, this challenge is applicable to any imaging application requiring refocusing due to various lens working distances.

Optotune Focus tuneable lenses solves this problem eliminating motorized zoom lenses or manual intervention.

Click here NOW for full detail specifications on tunable lenses

Adding an Optotune tunable liquid lens to the optical system on a standard C-mount lens and camera, allows refocusing of the imaging system on the fly.   When used in conjunction with distance sensors, its possible to  inspect objects of various heights, refocusing within 15 milli-seconds.

For example, vision systems using 8mm to 50mm focal length lenses can be equipped with a tuneable lens in the front, typically mounted on the filter thread.  In this configuration it is possible to focus from infinity down to about 100mm  or less if spacers are added.

This solution can be applied to industrial machine vision applications, ophthalmology, laser, microscopy, postal, packaging and laser applications to name a few.

Contact 1stVision for a quote on Optotunes Tunable lenses

Technology 411
 Optotune’s focus tunable lenses are shape-changing lenses based on a combination of optical fluids and a polymer membrane. The core element consists of a container, which is filled with an optical liquid and sealed off with a thin, elastic polymer membrane. A circular ring that pushes onto the center of the membrane shapes the tunable lens. The deflection of the membrane and with that the radius of the lens can be changed by pushing the ring towards the membrane or by exerting a pressure to the outer part of the membrane or by pumping liquid into or out of the container.
Watch this video to see the Optotune liquid lens in action

Advantages

A change in lens radius of several micrometers can have the same optical effect as moving the entire lens several centimeters. In turn there are several advantages

  • Optical systems can be designed more compact, oftentimes with less lenses and usually with less or no translational movement.
  • Large working distance ranges can be achieved
  • Eliminate expensive mechanical actuators resulting in a more robust design, which can be completely closed so that no dust can enter.  Essentially no moving parts for long life cycles (> 1B cycles)
  • Weight and volume is reduced in the system.
  • Low power consumption.
  • Fast response time of systems, down to the order of milliseconds.
  • Easy installation and remote focus control
  • Advanced controls for very accurate and repeatable control of the lens using Gardasofts TR-CL180 controllers

Want to know more?  Download Optotunes comprehensive white paper here 

This white paper will review the overall principles of tunable lenses, response times, wavefront quality, drive methods, and applications.

Contact 1stVision for a quote on Optotunes lenses and discuss an overall solution with cameras, lenses and lighting if required. 

UPDATE:  Video showing some great demo’s from the Stuttgart Vision show in 2018