Components needed for machine vision and industrial imaging systems

Machine vision and industrial imaging systems are used in various applications ranging from automated quality control inspection, bottle filling, robot pick-and-place applications, autonomous drone or vehicle guidance, patient monitoring, agricultural irrigation controls, medical testing, metrology, and countless more applications.

Imaging systems typically include a least a camera and lens, and often also include one or more of specialized lighting, adapter cards, cables, software, optical filters, power supply, mount, or enclosure.

At 1stVision we’ve created a resource page is intended to make sure that nothing in a planned imaging application has been missed.  There are many aspects on which 1stVision can provide guidance.   The main components to consider are indicated below.

Diverse cameras

Cameras: There are area scan cameras for visible, infrared, and ultraviolet light, used for static or motion situations.  There are line scan cameras, often used for high-speed continuous web inspection.  Thermal imaging detects or measures heat.  SWIR cameras can identify the presence or even the characteristics of liquids.  The “best” camera depends on the part of the spectrum being sensed, together with considerations around motion, lighting, surface characteristics, etc.

An assortment of lens types and manufacturers

Lens: The lens focuses the light onto the sensor, mapping the targeted Field of View (FoV) from the real world onto the array of pixels.  One must consider image format to pair a suitable lens to the camera.  Lenses vary by the quality of their light-passing ability, how close to the target they can be – or how far from it, their weight (if on a robot arm it matters), vibration resistance,  etc.  See our resources on how to choose a machine vision lens.  Speak with us if you’d like assistance, or use the lens selector to browse for yourself.

Lighting: While ambient light is sufficient for some applications, specialized lighting may also be needed, to achieve sufficient contrast.  And it may not just be “white” light – Ultra-Violet (UV) or Infra-Red (IR) light, or other parts of the spectrum, sometimes work best to create contrast for a given application – or even to induce phosphorescence or scatter or some other helpful effect.  Additional lighting components may include strobe controllers or constant current drivers to provide adequate and consistent illumination. See also Lighting Techniques for Machine Vision.

Optical filter: There are many types of filters that can enhance application performance, or that are critical for success.  For example a “pass” filter only lets certain parts of the spectrum through, while a “block” filter excludes certain wavelengths.  Polarizing filters reduce glare.  And there are many more – for a conceptual overview see our blog on how machine filters create or enhance contrast

Don’t forget about interface adapters like frame grabbers and host adapters; cables; power supplies; tripod mounts; software; and enclosures. See the resource page to review all components one might need for an industrial imaging system, to be sure you haven’t forgotten anything.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera and components selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

Lucid Helios2+ Time of Flight 3D cameras

The Lucid Vision Labs Helios2+ Time of Flight (ToF) 3D camera features High Dynamic Range (HDR) mode, and High-Speed Time-of-Flight mode, and a Sony DepthSense™ IMX556PLR 1/2″ global shutter CMOS back-illuminated ToF sensor.

Lucid Helios2+ Time of Flight 3D cameras

Do I need a Time of Flight (ToF) 3D camera? It depends. If you can achieve the desired outcome in 2D, by all means stay in 2D since the geometry is simpler as are the camera, lensing, lighting, and software requirements. But as discussed in “Types of 3D imaging systems – and benefits of Time of Flight (TOF)”, some applications can only be solved, or innovative offerings created, by working in a three dimensional space.

Robots doing pick-and-place, aerial drones, and patient monitoring are three examples, just to name diverse applications, that may require 3D ToF imaging. Some 3D systems use structured light or passive stereo approaches to build a 3D representation of the object space – but those approaches are often constrained to short working distances. ToF can be ideal for applications operating at working distances of 0.5m – 5m and beyond, with depth resolution requirements to 1 – 5mm.

Lucid Vision Labs has been a recognized leader in 3D ToF systems some time, and we are proud to represent their Helios2 and new Helios2+ cameras, the latter with high speed modes achieve frame rates of 100fps+.

Besides the high speed mode in the video above, another feature is High Dynamic Range mode, combining multiple exposures to provide accurate 3D depth information for high contrast, complex objects containing both highly reflective and low reflectivity objects. Sensing and depth measurement applications to sub-mm (< 1mm) precision. Click here to see examples and further details.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

Sony Pregius 4th generation continues image sensor excellence

Continuing the tradition of excellence begun in 2013, Sony’s 4th generation of Pregius sensors, designated Pregius S, is now available in a range of cameras. All Pregius sensors, starting with the “IMX” code preceding the sensor model number, provide global shutter pixel technology for active pixel CMOS image sensors that adopts Sony Semiconductor Solutions Corporation’s low-noise structure to realize high-quality images.

Pregius S brings a back-illuminated structure, enabling smaller sensor size as well as faster frame rates. The faster frame rates speak for themselves, but it’s worth noting that the smaller sensor size has the benefit of permitting smaller lenses, which can reduce overall costs.

Figure 1. Surface-illuminated vs. Back-illuminated image sensors

Let’s highlight some of the benefits offered by Pregius S image sensors:

  • With the photodiode placed closer to the micro-lens, a wider incident angle is created, admitting more light, leading to enhanced sensitivity. At low incident angles, the Pregius S captures up to 4x as much light as Sony’s own highly-praised 2nd generation Pregius sensors from just a few years ago! (See Fig. 1 above)
  • Light collection is further enhanced by positioning wiring and circuits below the photodiode
  • Smaller 2.74um pixels provides higher resolution in typical smaller cube cameras, continuing the evolution of ever more capacity and performance while occupying less space

While Pregius S sensors are very compelling, the prior generation Pregius sensors remain an excellent choice for many applications. As with many engineering choices, it comes down to performance requirements as well as cost considerations, to achieve the optimal solution for any given application. Many of the Pregius S image sensors can be found in industrial cameras offered by 1stVision.  Use our “Sensor” pull down menu on our camera selector to look for the new sensors, starting with IMX5 e.g. IMX541. 

Contact us

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lensescablesNIC card and industrial computers, we can provide a full vision solution!

Graphics courtesy of Sony.

AVT Alvium series G1 GigE and G5 5GigE Vision cameras

Supplementing Allied Vision’s ALVIUM Technology, AVT’s ASIC chip camera lineup, previously with USB3 Vision and MIPI CSI-2 interfaces, ALVIUM offerings now include two speed levels of the GigE Vision interface. While retaining the compact sugar-cube housing format, the ALVIUM G1 and ALVIUM G5 combine the advantages of the established GigE Vision standard with the flexibility of the ALVIUM platform.

ALVIUM G1 GigE and G5 5GigE Vision cameras

As a SoC design tailored for imaging, ALVIUM is highly-optimized to balance functionality and performance, unlike cameras built on generic components. And with four interfaces to the ALVIUM platform, users can match application needs by testing different interfaces, each with a similar user experience.

The ALVIUM G1 series are compact GigE cameras with excellent image quality, offering a comprehensive feature set across 14 sensors in the initial release:

  • Resolution: up to 24.6 megapixels
  • Sensors: CMOS global and rolling shutter sensors from Sony and ON Semi
  • Frame rates: up to 276 frames per second
  • Housing: Closed housing
  • Lens mount options: C-Mount, CS-Mount, or S-Mount (M-12)
  • Image colors: Monochrome and color (UV, NIR & SWIR coming soon)
ALVIUM G1

Click here to see all G1 models and get a quote

The ALVIUM G5 series offer the easy upgrade for more performance, also with a comprehensive feature set, and 11 high-performance Sony IMX image sensors at first release:

  • Resolutions: up to 24.6 megapixels
  • Sensors: CMOS global and rolling shutter SONY IMX sensors
  • Frame rates: up to 464 frames per second
  • Housing: Closed housing (60 mm x 29 mm x 29 mm)
  • Lens mount options: C-Mount, CS-Mount, or S-Mount (M-12)
  • Image colors: Monochrome and color (UV, NIR & SWIR coming soon)
ALVIUM G5

Click here to see all G5 models and get a quote

Contact us at 1stVision with a brief idea of your application, and we will contact you to discuss camera options. support and / or pricing.

Contact us

1st Vision’s sales engineers have an average of 20 years experience to assist in your camera selection.  Representing the largest portfolio of industry leading brands in imaging components, we can help you design the optimal vision solution for your application.

About Us | 1stVision

1st Vision is the most experienced distributor in the U.S. of machine vision cameras, lenses, frame grabbers, cables, lighting, and software in the industry.