IDS uEye cameras now focus automatically! Learn how to optimize your application

IDS camera

IDS Imaging has released its new contrast-based autofocus features in the popular LE board level cameras. These additions take advantage of standard liquid lenses from Varioptic with resolutions up to 18 megapixels. The uEye software now comes with an intuitive GUI with adjustable regions of interest and various image sharpness measurement algorithms.

As much as “Auto focus” seems like it would be the flip of a switch, its important to understand the various methods used in the image analysis. In order to focus an image, algorithms are needed to measure image sharpness which is relayed to the liquid lens to make adjustments. These methods as based on principles in measuring edge sharpness to analyzing histogram values of the pixel grey scales.

Measuring image sharpness additionally has various algorithms which which can be run providing more exact methods versus basic analysis. It is important to understand these methods as additional processing power is required, effecting the overall camera frame rate.

IDS Imaging has a “Tech Tip” which covers various auto focus methods, defines the characteristics of search algorithms and how they effect speed and provides application examples. Click the icon below to download.

Click to download tech tip

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Blogs & Products
IDS UI-1007XS – AutoFocus, 5MP camera for < $300 Click HERE for details

Why shouldn’t I buy a $69 webcam for my machine vision application?

IDS uEeye camera

This is a question we get asked frequently: “Why should we pay $200 plus for your board level machine vision camera when we can just get a webcam for $69?”

A great question and maybe you can, but what ARE the differences?

Basically, there are just a few questions you need to answer to see if you should use a webcam for you machine vision application which are as follows:

  1. Do you need to program to integrate the video into an application with processing or control?
  2. Do you need consistent image quality?
  3. Are you doing computer vision (the computer is making decisions based on the images) or are you just viewing the images visually?
  4. Do you care if the camera specifications change over your product’s life cycle?
  5. Is the object under inspection moving?
  6. Do you need to control when you take the picture or interface to a trigger or strobe?
  7. Do you need to be able to choose what lens you will need?

If the answer to any of the above are YES, then a webcam will NOT work well or at all for your application. If the answers are NO, then by all means, you might be able to save money and just use a low-cost webcam. (You can stop reading here if you want, or continue for more details below).

Machine Vision Camera Software

Webcams do NOT come with a SDK as they are made to show video only. They normally provide a universal video driver, and also an application for viewing video.

Industrial machine cameras come with a SDK programmable in C/C++/C#/etc. It allows you to programmatically control the camera for both data acquisition and control of the camera’s parameters. (Example HERE to show extensive support of various operating systems and download)

Moving objects

Webcams have rolling shutter sensors which mean they cannot acquire images of moving objects without ‘smearing’ them. Industrial machine vision cameras use sensors with global shutters providing the ability to freeze the image to produce non smeared images of moving objects.

Example: Without adequate shutter speed with a global shutter, image will be blurry with motion

Trigger and Strobe Control

Webcams only have an interface to the USB data, whereas industrial machine vision cameras have hardware and software inputs and outputs. These allow for exact timing for a trigger to take a picture and a strobe to illuminate the object.

Example: External trigger control is tightly timed with IO including light flash. Courtesy of IDS Imaging

Camera Specs Changing over time

Webcams just need to show you video! In turn the manufacturers are not concerned if the sensors inside the camera change every six months. Whether the sensitivity changes by 10% makes no difference when you are just video conferencing with Grandma.

Industrial machine vision cameras are made with image sensors that don’t go obsolete every 6 months, but rather companies hope for 10 year life spans. It makes a huge difference if you are doing a computer vision algorithm that you have 5 man years of software development and the sensor’s sensitivity changes by even 1%.

Furthermore, the form factor of webcams change frequently as well. This doesn’t make a difference when it is just on your desk. It makes a huge difference when your camera and lens is fixtured in a machine that has 500 hours of CAD work to design, much less build. Moving the camera and lens 10cm might not be possible!

Do you need to choose your lens?

Webcams come with an integrated lens that is suitable for general viewing, and this lens is integrated with the camera and not changeable. Industrial machine vision cameras come with no lenses as not only do lenses come in a variety of focal lengths for different magnification, but also lenses coming in a variety of resolutions. Choosing a lens requires you to know the size of the sensor, your working distance, your field of view, and the pixel size. (See related educational blogs on lenses at end of this post)

What are your options for a low cost camera solution?

If you need industrial machine vision camera solutions with a solid SDK, long life cycles, at a low price, there several solutions to consider. Rolling shutter imagers are always lower price which are always a place to start along with USB2 interfaces. Read our previous blog HERE which outlines some specific models which are low cost. There is also a great new platform coming providing 5 Megapixel resolution with a rolling shutter imager, but with great performance for $280! Contact us for more details.

Click to contact
Give us some brief idea of your application and we will contact you to discuss camera options.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Posts

The Machine Vision camera “Sleepability factor”!?

machine vision camera

sleepy cameraThe sleepability factor, or how saving $50 on a machine vision camera could cost you thousands!

As an independent machine vision camera distributor, we are asked about the manufacturers we represent.  Out of all them, we have chosen to only carry products from a few machine vision camera and lens companies of which we have not really changed this over the 20 years we have been in business.  Why is this?

These days, there are probably over 30 different camera manufacturers making products for the machine vision marketplace, many using the identical image sensors.  Considering anyone can just put up a web page and start selling, how can a user know which product to purchase?  Are there really any differences?  Should I just purchase on price?  Should I buy from a distributor or from the manufacturer direct?  All great questions, that we will attempt to answer.

The very simple and quick answer is that if you just need to get a image in good light, pretty much any camera from any vendor will do that job.  No matter if it is from a large company or a 2 person startup, when you take the product out of the box, you should see a “good” image.

But if you said, “I want this camera to run 24/7 for the next 5 years, I want to be able to develop complex software to integrate into my machine, I need the image sensor plane to be within a certain tolerance for each machine,” this changes the situation.

IDS imaging camera
IDS Imaging USB3 cameras

The reason we have chosen the camera manufacturers we sell products from is because each of them has a proven track record of reliability.  Each of the companies we represent ships 6 figures of cameras per year.  IDS Imaging for instance ships close to 200,000 cameras per year and has a return rate of under 0.3%.

 

Allied vision camera
Allied Vision GigE Cameras

Allied Vision was the first company to incorporate the Precision Timing Protocol (PTP) which allows for precise multi camera sync, enabling our clients to not only make sure the application will work, but it doesn’t take years to develop it.

 

 

 

Dalsa line scan cameras
Teledyne Dalsa Line Scan cameras

 

Teledyne Dalsa, besides being a leader in line scan technology,  has a SDK that has been built upon for over 30 years.

 

 

JAI’s prism technology is so good that its competitors actually have JAI

JAI cameras
JAI 3-CMOS Prism camera

manufacture for them.  This isn’t to say there aren’t other camera companies with such characteristics.  There are, and many of the other camera companies have excellent products as well.  It is just that we have chosen these companies, and we have stood with them for 15+ years for good reasons… sleepabilty!

What does this mean to you as a client?  Yes, you can purchase a camera from any vendor, which on a $500 camera, you might even be saving $50 a camera.  If you purchase 100 cameras a year, this adds up to a reasonable savings of $5,000.  But what happens if your machine, which you sell globally, has a camera that fails.  What is the cost of the line going down at your client?  How do you look in your client’s eyes?  What is the cost for you to fix it?

If you had your choice of buying a camera with the same characteristics at roughly the same price, but one company makes 20,000 a year, and the other makes 200,000 a year, which would you choose?  The same is true if you can choose between a company that has offices all over the world, or just in one country.  Or one that has many application engineers to answer your questions, or just one.

We just want to point out that if you are making a purchase on price alone, depending upon your circumstances, it might not really be a savings at all.  In fact, it might actually not only be costing you money, but it might even be costing you your sleep!

Contact us

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

 

How to get greater resolution from your color sensor using a low cost 18 MP IDS camera

Bayer Patter - Mono

IDS UI-3590 camera
IDS UI-3590CP camera

The AR1820HS Image sensor 18 mega pixel sensor in the IDS Imaging IDS Imaging UI-3590 camera models was launched by the sensor manufacturer ON Semiconductor as a pure color sensor.  Like all color sensors, the Bayer filter means that you get color images with effectively only around a quarter of the nominal sensor resolution, as the color information for each pixel is obtained from four neighbors

To use each individual pixel, however, it is not sufficient to operate the sensor in RAW data format (without Bayer interpolation).  Operating in a raw format results in a different brightness perception of the individual pixels and NOT a usable image.

This technical tip will show you how to use the color sensor as a “pure” mono sensor by appropriate parameter settings and the use of suitable light sources, in order to obtain a significantly higher resolution.

Applications which require a color image and precision will benefit from this camera and method.. and all for less than $600 with the IDS UI-3590LE camera

Background

Bayer Pattern
Arrangement of colour filters in the Bayer matrix

The principle of digital image sensors such as the 18 MP ON Semiconductor AR1820HS means that they acquire only brightness, but not color information.

As a result, a color filter is applied to each pixel during manufacture of the color sensors.  This is known as the Bayer matrix.

Of each four pixels, two pixels are given a green color filter, one pixel a red filter and one pixel a blue color filter.  This color distribution corresponds to the perception of the human eye and is referred to as the Bayer matrix.

RGB Filter
The RGB filter layers only transmit light with
a particular wavelength

A pixel depicts only the information for one color.

To obtain the complete RGB values for each pixel, the missing primary colors are interpolated from four neighboring pixels using appropriate algorithms. This color interpolation assumes that there are only slight color differences between two adjacent pixels of the same color.  Strictly speaking, a sensor with Bayer matrix therefore has only a quarter of the native sensor resolution

Sensor mono mode

Although the Bayer matrix cannot simply be rendered invisible for mono mode, the following two solutions show how you can achieve the desired result depending on the type of application.

1) For “grey scenes”  (i.e. dark pin on a white background)

If the 18 MP color sensor is to be used in mono mode for achromatic scenes, note that a broad band light source (white light) must still be used. This is because of the sensor’s Bayer matrix.  With this sensor, monochromatic (single color) light would have resulted in the individual pixels transmitting no or less information depending on the wavelength of the light, due to the RGB filter layers used (see Figure 2). This can result in a different brightness perception for the individual pixels. In this case, the RGB enhancement must be calibrated separately for R, G, and B. As a result, you then obtain an identical brightness perception for all pixels as with a mono sensor.

IDS Imaging
Without calibration of the RGB enhancement, the Bayer matrix is clearly visible (left).
After RGB calibration (see RGB histogram, right) there is a homo-geneous brightness perception as with a mono sensor

Note: This RGB calibration is only valid for this specific light source and a “grey” scene.  If the light source (wavelength) changes, the RGB enhancement factors have to be re-adjusted.

Contact 1stVision to obtain instructions on  switching the Bayer matrix to “invisible” using the uEye Cockpit:2) For “color or grey scenes”

If you work with color scenes in your application, the brightness sensitivity of the individual Bayer pixels constantly changes with the variation in color components. There is also a way to achieve genuine mono mode in this situation. The solution lies in the color spectrum of the 18 MP ON Semiconductor AR1820HS.

Above a wavelength of around 900 nm the color filters for the individual pixels have similar spectral properties. Beyond this threshold, all pixels on the sensor respond practically identically to incident light again – exactly as with a dedicated mono sensor. This means that the Bayer matrix can also be made invisible using this method, both for color and also for grey scenes

AR1820HS Spectrum
The colour spectrum of the AR1820HS shows similar spectral proper-ties of the colour filters above 900 nm

In order to be able to use this spectral property of the sensor as described, you must observe the following:

  • Ensure defined lighting conditions, i.e. seal off light with other wavelengths shorter than 900 nm as far as possible.
  • Order your uEye camera with AR1820HS sensor specifically with GL filter (glass). The HQ filter normally ordered with this sensor would block out the long-wave light.  By contrast, the GL filter allows light beyond 900 nm to pass with high transmission. The highest possible signal strength thus arrives at the sensor.

Full Information on the IDS Imaging UI-3590LE and UI-3590CP cameras can be found below

IDS-UI-3590LE – 18MP camera, LE version

IDS-UI-3590CP – 18MP camera, CP version

1stVision has over 100 years of industrial imaging experience!  Contact us to help select the best camera and lenses for your applications.

contact us