Why shouldn’t I buy a $69 webcam for my machine vision application?

IDS uEeye camera

This is a question we get asked frequently: “Why should we pay $200 plus for your board level machine vision camera when we can just get a webcam for $69?”

A great question and maybe you can, but what ARE the differences?

Basically, there are just a few questions you need to answer to see if you should use a webcam for you machine vision application which are as follows:

  1. Do you need to program to integrate the video into an application with processing or control?
  2. Do you need consistent image quality?
  3. Are you doing computer vision (the computer is making decisions based on the images) or are you just viewing the images visually?
  4. Do you care if the camera specifications change over your product’s life cycle?
  5. Is the object under inspection moving?
  6. Do you need to control when you take the picture or interface to a trigger or strobe?
  7. Do you need to be able to choose what lens you will need?

If the answer to any of the above are YES, then a webcam will NOT work well or at all for your application. If the answers are NO, then by all means, you might be able to save money and just use a low-cost webcam. (You can stop reading here if you want, or continue for more details below).

Machine Vision Camera Software

Webcams do NOT come with a SDK as they are made to show video only. They normally provide a universal video driver, and also an application for viewing video.

Industrial machine cameras come with a SDK programmable in C/C++/C#/etc. It allows you to programmatically control the camera for both data acquisition and control of the camera’s parameters. (Example HERE to show extensive support of various operating systems and download)

Moving objects

Webcams have rolling shutter sensors which mean they cannot acquire images of moving objects without ‘smearing’ them. Industrial machine vision cameras use sensors with global shutters providing the ability to freeze the image to produce non smeared images of moving objects.

Example: Without adequate shutter speed with a global shutter, image will be blurry with motion

Trigger and Strobe Control

Webcams only have an interface to the USB data, whereas industrial machine vision cameras have hardware and software inputs and outputs. These allow for exact timing for a trigger to take a picture and a strobe to illuminate the object.

Example: External trigger control is tightly timed with IO including light flash. Courtesy of IDS Imaging

Camera Specs Changing over time

Webcams just need to show you video! In turn the manufacturers are not concerned if the sensors inside the camera change every six months. Whether the sensitivity changes by 10% makes no difference when you are just video conferencing with Grandma.

Industrial machine vision cameras are made with image sensors that don’t go obsolete every 6 months, but rather companies hope for 10 year life spans. It makes a huge difference if you are doing a computer vision algorithm that you have 5 man years of software development and the sensor’s sensitivity changes by even 1%.

Furthermore, the form factor of webcams change frequently as well. This doesn’t make a difference when it is just on your desk. It makes a huge difference when your camera and lens is fixtured in a machine that has 500 hours of CAD work to design, much less build. Moving the camera and lens 10cm might not be possible!

Do you need to choose your lens?

Webcams come with an integrated lens that is suitable for general viewing, and this lens is integrated with the camera and not changeable. Industrial machine vision cameras come with no lenses as not only do lenses come in a variety of focal lengths for different magnification, but also lenses coming in a variety of resolutions. Choosing a lens requires you to know the size of the sensor, your working distance, your field of view, and the pixel size. (See related educational blogs on lenses at end of this post)

What are your options for a low cost camera solution?

If you need industrial machine vision camera solutions with a solid SDK, long life cycles, at a low price, there several solutions to consider. Rolling shutter imagers are always lower price which are always a place to start along with USB2 interfaces. Read our previous blog HERE which outlines some specific models which are low cost. There is also a great new platform coming providing 5 Megapixel resolution with a rolling shutter imager, but with great performance for $280! Contact us for more details.

Click to contact
Give us some brief idea of your application and we will contact you to discuss camera options.

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Posts

What Are the Benefits of CMOS vs CCD Machine Vision Cameras?

Industrial machine vision cameras historically have used CCD image sensors, but there is a transition in the industrial imaging marketplace to move to CMOS imagers. Why is this?.. Sony who is the primary supplier of image sensors announced in 2015 it will stop making CCD image sensors and is already past its last time buy. The market was nervous at first until we experienced the new CMOS image sensor designs. The latest Sony Pregius Image sensors provide increased performance with lower cost making it compelling to make changes to systems using older CCD image sensors.

What is the difference between CCD and CMOS image sensors in machine vision cameras?

Both produce an image by taking light energy (photons) and convert them into an electrical charge, but the process is done very differently.

In CCD image sensors, each pixel collects light, but then is moved across the circuit via current through vertical and horizontal shift registers. The light level is then sampled in the read out circuitry. Essentially its a bucket brigade to move the pixel information around which takes time and power.

In CMOS sensors, each pixel has the read out circuitry located at the photosensitive site. The analog to digital circuit samples the information very quickly and eliminates artifacts such as smear and blooming. The pixel architecture has also radically changed moving the photosensitive electronics to be more efficient in collecting light.

6 advantages of CMOS image sensors vs CCD

There are many advantages of CMOS versus CCDs machine vision cameras outlined below:
1 – Higher Sensitivity due to the latest pixel architecture which is beneficial in lower light applications.
2 – Lower dark noise will contribute to a higher fidelity image.
3 – Pixel well depth (saturation capacity) is improved providing higher dynamic range.
4 – Lower Power consumption. This becomes important as lower heat dissipation equals a cooler camera and less noise.
5 – Lower cost! – 5 Megapixel cameras used to cost ~ $2500 and only achieve 15 fps and now cost ~ $450 with increased frame rates.
6 – Smaller pixels reduce the sensor format decreasing the lens cost.

Click to contact

What CMOS image sensors cross over from existing CCD image sensors?

1stVision can help in the transition starting with crossing over CCDs to CMOS using the following cross reference chart. Once identified, use the camera selector and select the sensor from the pull down menu.

Sony CCD to CMOS cross reference chart

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Blogs & Technical resources

Guide to understanding Machine Vision interface standards

Machine Vision standards have evolved providing defined models of how industrial cameras communicate to a PC allowing easier implementation of machine vision technology. Vision systems can be made up of cameras, frame grabbers and vision libraries from various manufacturers. The vision standards provides compatibility between the various manufacturers for easy implementation.

Machine vision applications require some basic tasks of finding and connecting to the cameras, configuring parameters, acquiring images and dealing with events to and from the cameras.

machine vision interface  - GENICAM

In order to provide cameras from various manufacturers to work together with 3rd party software and hardware from other manufacturers and provide the tasks above, a standard must be followed. “GenICam” is the basis for this standardization, providing compatibility using a Generic Transportation layer and Generic Application programming interface. These are referred to as “GenTL” and “GenAPI” respectively. GenTL provides the communication layer and GenAPI enables camera features to be configured by analyzing a compliant XML file for the camera.

Camera manufacturers however provide unique independent features providing various advantages from one to another. Creating these unique features blur the lines of the standard, not always making a camera fully compatible with another manufacturers software. For example, an industrial camera may use the GenTL layer to be recognized but may have special features making it unique as well.

This can be very confusing to understand! IDS Imaging has a white paper explaining the machine vision interface standardization, GenTL, GenAPI and the system architecture . CLICK BELOW NOW TO DOWNLOAD!

Download here
Click to download

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Click to contact

Related Blogs & Technical resources

Imaging Quick ref Poster

Quick Reference Imaging poster download

What is the fastest 2.4MP GigE camera at the lowest price point? Dalsa’s new Nano M1950 / C1950!

Dalsa Nano

Dalsa NanoTeledyne Dalsa has released the latest addition to the Genie Nano family.  Introducing the Nano M1950 and C1950 cameras using the Sony Pregius IMX392 image sensor.  This is a great replacement for older Sony ICX818 CCD sensors.

These latest Nano models offer 2.4 MP (1936 x 1216) resolution with a GigE interface in color and monochrome with up to 102 frames per second utilizing TurboDrive.

What’s so interesting about the Nano M1950 and C1950 models?

2.4 MP resolution with the speed of the popular IMX174, but at the price of the IMX249:  
Sony Pregius image sensors in a given resolution has created paired sensors, one being faster at a higher price and one slower at a lower price.  The Nano M1940 / C1940 cameras use the IMX174 which is a great sensor and historically had the fastest speed at 2.4MP in GigE, but at a premium.  We could opt for the Nano M1920 / C1920 cameras with the IMX249 at a lower price, but sacrificed speed.

Until now! – The latest Nano M1950 / C1950 models with the IMX392 provides the higher speed of the M1940 / C1940 cameras, but at the lower price of the Nano M1920 / C1920 cameras. 

2.4MP resolution using a 1 /2 in sensor format, provides cost savings on lenses.
Thanks to the Sony Pregius Gen 2 pixel architecture, the pixel size is 3.45um, allowing the same resolution and eliminating the added cost of larger format lenses found in the IMX174 / IMX249 sensors which were 1 / 1.2″ formats.

Contact 1stVision to get our recommendations on lens series designed for the 3.45um pixel pitch. 

When would you use the Sony Pregius IMX392 versus the IMX174 and IMX249 sensors? 

The Sony Pregius IMX174 / IMX249 images still have an incredible dynamic range due to the pixel architecture found in the first generation image sensors.  (Read more here on Gen 1 vs Gen 2).  If you need dynamic range, with large well depths of 30Ke-, then use the IMX174 / IM249 sensors.

I’m so confused!   Where can I get the specs on the new Nano M1950 / C1950, understand what sensors are in what cameras and get a quote?

The tough part today, is that there a ton of model #’s in the Sony Pregius sensors lineup and in turn camera product lines.  Here’s a brief table to help with links to spec’s, related image sensors and a link to get a quote.

Sensor          Model 
IMX174         Nano M1940 / C1940          GET QUOTE
IMX249        Nano M1920 / C1920           GET QUOTE
IMX392        Nano M1950 / C1950           GET QUOTE

1st Vision’s sales engineers have over 100 years of combined experience to assist in your camera selection.  With a large portfolio of lenses, cables, NIC card and industrial computers, we can provide a full vision solution!

Contact us to help in the specification and providing pricing

Ph:  978-474-0044  /  info@1stvision.com  / www.1stvision.com

Related Blogs & Technical resources

Imaging Quick ref Poster
Quick Reference Imaging poster download

https://www.1stvision.com/machine-vision-solutions/2019/04/sony-pregius-3rd-generation-image-sensor.html

Teledyne Dalsa TurboDrive 2.0 breaks past GigE limits now with 6 levels of compression

What is a lens optical format? Can I use any machine vision camera with any format? NOT!